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Abstract—Stochastic computing, which employs random bit
streams for computations, has shown low hardware cost and
high fault-tolerance compared to the computations using a
conventional binary encoding. Finite state machine (FSM) based
stochastic computing elements can compute complex functions,
such as the exponentiation and hyperbolic tangent functions,
more efficiently than those using combinational logic. However,
the FSM, as a sequential logic, cannot be directly implemented in
parallel like the combinational logic, so reducing the long latency
of the calculation becomes difficult. Applications in the relatively
higher frequency domain would require an extremely fast clock
rate using FSM. This paper proposes a parallel implementation
of the FSM, using an estimator and a dispatcher to directly
initialize the FSM to the steady state. Experimental results show
that the outputs of four typical functions using the parallel
implementation are very close to those of the serial version. The
parallel FSM scheme further shows equivalent or better image
quality than the serial implementation in two image processing
applications Edge Detection and Frame Difference.

I. INTRODUCTION

Stochastic computing has shown to be low cost in terms
of hardware area, high fault-tolerance and short critical path
compared to computations using conventional binary encod-
ing. Computations based on this stochastic approach can be
implemented with very simple logic.

A
B

11010111

11001010

11000010

a=6/8

b=1/2

c=3/8

CAND

Fig. 1: Stochastic Computing Multiplication using a single
AND Gate

Combinational logic has been studied in the early stochastic
computing. For instance, an AND gate can be implemented
to calculate multiplication as in Fig 1. Stochastic sequential
logic using a Finite State Machine (FSM) was first proposed
by Brown and Card [1] and then validated by Lilja and Li [2].
The FSM as in Figure 2, consisting of only a few D flip-flops
and simple combination logics, is capable of approximating
functions, such as exponential, hyperbolic tangent (tanh) and
absolute value. However, the stochastic computing will cause

long latencies due to its long bit stream [3]. This latency
can be reduced by implementing parallel stochastic units
when only using the combinational logic [4]. Because any
bit in combinational logic without any feedback loop [5] is
uncorrelated with each other, we can implement it in serial,
which is distributed in time, or in parallel, which is distributed
in space. Both will have the same expected output value. On
the other hand, the FSM as a sequential logic, having bits
correlated in time, cannot be directly implemented in parallel.
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Fig. 2: Finite State Machine diagram for approximating the
exp function.

Currently, the length of the stochastic computing bit stream
is typically from 256 to 1024 bits, which means the clock
frequency should be 256 to 1024 times of the sampling
frequency. For example, for audio applications, the sampling
rate is around 48kHz, which would require the stochastic
computing circuit to boost its clock rate to around 48MHz.
This is acceptable for low frequency situations, but for higher
frequency applications, this will significantly increase the
hardware area and energy use.

In this paper, we focus on how to implement the FSM in
parallel to reduce the long calculation latency. We also propose
a state dispatcher to quickly put the FSM in steady state, thus
making the FSM possible to be implemented in parallel. The
rest of the paper is organized as follows. Section II briefly
reviews the previous works. A straightforward implementation
of parallel FSM is studied and a new structure is proposed
in Section III. We present part of the experimental results
of the new parallel FSM and the hardware cost comparisons
respectively in Sections IV and V, and draw conclusions in
Section VI.

II. RELATED WORK

Since the early works of Gaines [6], researchers have
employed the stochastic computing algorithms in various
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areas including neural networks [7], [8], [3], signal process-
ing [9], [10], [11], [12], [13] and image processing appli-
cations [2], [14]. Qian et al. [15] has proposed a synthesis
method using the Bernstein polynomials to approximate func-
tions with only combinational logic. However, such synthe-
sis requires multiple uncorrelated random input bit streams,
which increases the hardware cost. Besides, to achieve a
higher accuracy, the degree of the polynomial will have to
increase, which will cause the number of the input sources
to grow even larger. Functions such as exponential cannot
be efficiently implemented due to the large hardware cost.
Brown and Card [1] proposed a sequential logic FSM. Li
and Lilja [2] later validated the mathematics of the FSM
and proposed systematic methods to synthesize and implement
it into various image processing applications [14]. With very
limited hardware cost, the FSM is capable of approximating
functions such as absolute value, exponential and tanh, and is
widely used in various applications [7], [2], [3].

Although these applications benefits from low hardware cost
and high fault tolerance of stochastic computing, the long se-
quence of bits to get a smaller variance for a better estimate of
output value creates long latency and significant performance
drop compared with conventional implementations. A parallel
implementation of combinational logic is proposed in [4]
which has higher computing accuracy and faster processing
speed by using a nibble serial data organization, but this
method can only apply to combinational stochastic logic
not sequential ones such as FSM. Wang, et al [5] further
studied the impact of feedback loop on stochastic circuits. A
rerandomizer is proposed to break the correlation introduced
by the feedback loop. Because the rerandomizer generates
the bit stream for the next real domain clock value, it must
preserve the equivalent precision and uses all the bits from
the previous value to generate the next one, which causes
a time delay of a real domain clock. Pixel level parallelism
that requires a large array of stochastic computing units to
calculate the entire image is proposed in [2] to speedup
the application processing time. Although this method can
improve throughput, the calculation latency for each pixel
remains the same.

III. THE PARALLEL FSM DESIGN

The Finite-State Machine is based on the Markov Chain
theory. The probability distribution of states after a long run is
deterministic and unique for each input value, which is called
the steady-state distribution [16]. For example, the transition
matrix P of a 4-state FSM with input probability of x is

P =


1− x x 0 0
1− x 0 x 0
0 1− x 0 x
0 0 1− x x


The steady-state distribution π of this transition matrix, as

in Equation. 1 can be shown to exist and to be solved.

π = πP (1)

Fig. 3 shows the steady-state distributions of a typical 16-
state FSM with different input values. The expected time (i.e.,
number of clock cycles) to reach this steady state can be
calculated using the transition matrix. When each vector of
Pn becomes the same as the steady-state distribution, n is the
number of steps to reach the steady state. A 16-state FSM
with an input value of 0.5 can be estimated to require at
least 200 cycles to reach the steady state. This will become
a huge disadvantage if we want to implement a parallel FSM
with bit stream length of 1024, since the convergence period
will be too long for each parallel copy. We implemented a
straightforward parallel FSM of the absolute value function as
in Fig. 6a to show this impact. The inputs are 32 uncorrelated
bit streams generated by feeding the same value X into 32
Linear-feedback shift register (LFSR) random bit generators.
Then each input is sent to an absolute value function FSM.
The mean value of all output bit streams represent the final
output value Y. We initiate the FSM with different states 0, 7
and 15, which are the left extreme, middle and right extreme
points of all the states. The performance of this straightforward
parallel implementation is shown in Fig. 4. When the number
of parallel copies is 4 and the length of each bit stream is
256, the output mean value is still close to the real value.
However, as the number of parallel copies increases, the output
mean value becomes less accurate. When the initial state is 0,
the right part of the results significantly drift away from the
expected results as parallel copies increases. When the initial is
15, the left part drifts away. When the FSM starts at the middle
state 7, all data points move away from the correct value. This
is because the FSM generates wrong outputs before it reaches
the steady state and this impact grows significantly when the
bit stream becomes shorter.

Further, we implemented this straightforward parallel FSM
in one of the image applications, Frame Difference, that uses
the absolute value function as in [2]. We implemented 32
parallel copies of the FSM units with different initial states
at 0, 7 and 15, and each bit stream has 32 bits, so the
total number of stream bits of each pixel is 1024, same as
the serial stochastic implementation. Fig. 5 shows clearly
that the straightforward implementations lose most of the
information and fail to compute the correct Frame difference
results. Moreover, the results from initial state at 0 and 15
are somehow in complementary shapes. Combining the two
can give us a graph very close to the correct result. Whereas
when the initial state is at 7, the output shows a rough shape
but most of the details are lost. This matches the observations
of the absolute value implementation in Fig. 4

This phenomenon is due to the Markov Chain nature of the
FSM. Each input value generates a transition matrix that has
a steady state distribution as in Fig. 3. When the input value
is much smaller than 0.5, the steady state distribution mostly
concentrates to state 0. When the input value is much larger
than 0.5, it concentrates to state 15. Therefore only half of the
outputs are correct when we set the initial state to be 0 or 15
and all outputs are not correct when we set initial state as 7.
To faster reach the steady state and decrease the convergence
time, we can manually store the steady state distributions and
initiate the FSM directly to the them when the input value is
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(c) input value is 0.8

Fig. 3: The Steady-State distribution of a 16-state FSM. From the figure, we can see that this distribution is symmetric about
the input value of 0.5. The distribution changes the most here, making it very sensitive around 0.5.
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(a) initial state at 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Input Value

O
u

tp
u

t 
V

a
lu

e

 

 

para 2

para 4

para 8

para 16

para 32

real

(b) initial state at 7
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(c) initial state at 15

Fig. 4: The mean output of the straightforward implementation of FSM with 2, 4, 8, 16 and 32 parallel copies. The FSM is a
typical 16-state absolute value function. The three subgraphs are using different initial state at 0, 7 and 15 respectively.

(a) Frame Diff Original (b) Conventional (c) Para Impl Init State 0 (d) Init state 7 (e) Init state 15

Fig. 5: Simulation results of the conventional deterministic scheme, serial and a straightforward parallel stochastic implemen-
tation on Frame Difference with different initial states. The straightforward parallel stochastic implementation is clearly not
able to compute the correct results.

known. A dispatcher is proposed to initiate the FSMs from
any input value as in Fig. 6d.

The dispatcher itself is a look up table (LUT), through
which the input value can pick its corresponding set of initial
states. For example, when the input is 0.5, the initial states are
evenly distributed among all FSMs as in Fig. 3b. Each state
(of 16 states) will be assigned to two FSMs as initial state
for a 16-state parallel FSM of 32 parallel copies to mimic the
steady distribution of 0.5. Thirty-two initial states are stored
in the table to approximate the distribution from each input.
The LUT has 20 entries from 0 to 1, with step of 0.05. The
dispatcher requires an estimation of the input value to pick the
correct entry of states, so an estimator is implemented before
the dispatcher unit.

We propose two implementations of the estimation unit,
parallel counter and majority gate counter, as in Fig.6c.
Because the dispatcher LUT entries increase with a step of
0.05, we choose the estimation bit stream length to be 416
(32 parallel copies x 13 cycles) where the standard deviation

of the estimation is 0.025 (est± 0.025) to be precise enough
for the parallel counter to pick the entries in the dispatcher.
Moreover, since the steady state distribution is less sensitive
around input 0 and 1, a simpler majority gate as in Fig.7
can meet the estimation needs as well. During the estimation
process, the dispatcher could not give an initial-states set, the
parallel FSM unit will have a stall. We could store the bits
in the estimation process and feed them back to the FSMs in
the next estimation, making it a simple pipeline to avoid this
stall. This way, it only impacts the first input data and does
not slow down the overall calculation speed. The complete
parallel FSM implementation is shown in Fig.6b.

IV. EXPERIMENTS AND RESULTS

In this section, we will introduce the experimental method-
ology and present the computational results. We first set up
the parallel FSM unit to approximate 3 typical FSM functions,
absolute value, tanh and exponential to study the parallel
implementation impact. We implemented our scheme with 32
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Fig. 6: The straightforward parallel FSM implementation and the proposed parallel implementation. The proposed parallel FSM
has 32 parallel short bit streams sent to the Estimator to obtain an initial guess for the input. Two Estimator implementations
are parallel counter and majority gate counter. This initial estimate is then sent to the Dispatcher to look up a set of state
configurations to initialize the parallel FSMs.
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Fig. 7: The experiment and analytical output result of a 32-
input Majority Gate.

parallel units of FSMs that can reduce the bit stream length
from 1024 to 32. Due to the probabilistic nature of the stochas-
tic computing scheme, we perform our experiments repeatedly
for 10 times for statistical significance. The experimental
results compare the accuracy and consistency among different
schemes, including the serial FSM, the straightforward parallel
FSM as in Fig. 6a, the parallel FSM with a parallel counter
estimator and a majority gate estimator as in Fig. 6c. Then,
we implemented our parallel FSM with the majority gate
estimator into two image processing applications as in [2].
Edge detection uses a FSM to approximate absolute value
function. And Frame Difference applications uses two FSMs
to approximate absolute value and tanh functions respectively.
We implemented the FSMs in parallel the same way as in the
previous single function implementations. The experimental
results compare the output image quality using mean squared
error (MSE) and peak-signal-to-noise ratio (PSNR) among the
conventional deterministic scheme (Conventional), the serial
stochastic scheme (Serial) and parallel stochastic scheme (Par-
allel). The MSE is the mean of the square of each pixel error
between the stochastic implementation and the conventional
implementation results as in Equation 2.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(I(i, j)−K(i, j))2 (2)

where I refers to the image result from the conventional
implementation and K refers to either of the stochastic imple-

TABLE I: The average error and deviation of the parallel
FSMs.

Abs err Abs std Tanh err Tanh std Exp err Exp std
serial 0.0066 0.0127 0.0121 0.0224 0.0105 0.0171
straight 0.1320 0.0118 0.0840 0.0234 0.1500 0.0141
paraCnt 0.0038 0.0141 0.0049 0.0248 0.0176 0.0211
mjrEst 0.0057 0.0150 0.0045 0.0285 0.0199 0.0238

mentations. PSNR is further calculated using the MSE as in
Equation 3.

PSNR = 20× log10(MAXI)− 10× log10(MSE) (3)

where MAXI is the maximum possible pixel value of the
image. The bit length of each pixel of all images in this paper
is 8, so the MAXI value is 28 − 1 = 255. PSNR shows the
ratio between the maximum possible power of a signal and
the noise in dB.

Fig. 8 compares the output accuracy, showing the true
output value and the mean value of the repeated experimental
results of the serial and different parallel stochastic FSM
implementations. The average error and the standard deviation
of each implementation are shown in Table. I. The straight-
forward scheme shows significant difference from the true
output, while the other two parallel schemes with estimator and
dispatcher are very close to the true output, showing very good
accuracy. The error becomes bigger as the input value grows
to 0.5 due to larger autocorrelation and variance impacts [17].
The parallel FSM tend to be closer to true value than the
serial FSM when the input value is near 1, especially with the
exponential and tanh functions. Since the serial FSM initiates
to state 0, it needs time to grow from state 0 to 15 when
the input value is close to 1. This transition requires at least
16 steps, generating 16 wrong output bits. A bit stream of
1024 bits has an error rate of 16

1024 = 1.56% with 16 wrong
output bits. However, the parallel FSM does not fix the initial
states, making no difference between different input values.
This makes the parallel implementation more accurate near
input value of 1.

Edge Detection and Frame Difference results are shown in
Figures. 9. It is hard to visually find any difference in both
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Fig. 8: The output mean value of two parallel FSMs with parallel counter as estimator or majority gate estimator and the serial
FSM. Both estimators use 13 clocks, 13× 32 = 416 bits, to approximate the input value.
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Fig. 9: Simulation results of the conventional deterministic scheme, serial and parallel stochastic implementation on Edge
Detection and Frame Difference. The three schemes on both applications show almost no visual differences.

TABLE II: The MSE and PSNR of image processing applica-
tions

Applications MSE PSNR (dB)
serial parallel serial parallel

EdgeDetect 47.3 47.9 31.4 31.3
FrameDiff 156.5 133.4 26.2 26.9

application results other than some outliers due to the prob-
abilistic nature of the stochastic computing. Detailed image
quality comparisons are listed in Table II. Both applications
achieved acceptable PSNR of 8-bit images under both serial
and parallel implementations [18]. Both of them have similar
MSE under two different schemes.

In summary, the experimental results show that the per-
formance of the parallel FSM is as good as the serial im-
plementation. The simplified majority gate estimator can also
compete with a more complex parallel counter, which suggests
more simplifications could be exploited for low accuracy
applications. When number of parallel units increases and the
number of each bit stream decreases, this estimator-dispatcher
mechanism becomes crucial to ensure the accuracy of the

parallel FSM scheme. The image processing applications show
that the parallel FSM implementation can achieve equivalent
or better image quality than serial implementations.

V. LATENCY AND HARDWARE COST

We implemented the serial and parallel stochastic finite-state
machine in verilog using Xilinx ISE. The estimator of the
parallel FSM unit is implemented using two different schemes,
parallel counter and majority gate as in Figure 6c. The
hardware cost of the 32-degree parallelism implementation
is shown in Table III, where parallel (PC) refers to parallel
FSM implementation using parallel counter as the estimator
and parallel FSM (MG) refers to the implementation using
majority gate. The hardware area reported is the number of
look-up table and flip-flop pairs (LUT-FF).

Although the parallel implementation of the FSM introduces
hardware overhead, it reduces the latency compared to the
serial version. For instance, when the number of parallel copies
is 32, the serial implementation latency reduces from 1024
cycles to 32 cycles. This significant latency reduction can be
critical for high frequency applications. Although the parallel
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TABLE III: Hardware Cost, Latency and Area-Delay Product
of serial and parallel FSM with 32 degrees of parallelism

serial parallel (PC) parallel (MG)
FSM unit 4 8× 32 8× 32

supporting unit - 72 66
total LUT-FF pairs 4 328 322

initial latency 0 13 13
latency 1024 32 32

Area-Delay Product 4096 10496 10304

implementation does introduce an initial latency during the
input estimation process by 13 cycles as in Table III, we can
minimize this impact by feeding back these 13 bits during
the next estimation as a pipeline. We can further see that the
parallel implementation Area-Delay Product (ADP) is greater
than the serial ADP due to the significant hardware overhead
for the parallel implementation. Of course it is a common
practice to trade off area for better performance. Each FSM
unit of the parallel implementation becomes about twice as
large as the serial FSM, which contributes the larger hardware
overhead. This is because the parallel FSM must be able
to initialize to different states, which increases the hardware
complexity and area cost. Another hardware overhead of the
parallel FSM comes from the dispatcher and estimator, which
is shown in Table III as supporting unit. The dispatcher is
simply a look-up table (LUT) with multiple entries, that each
store a set of initial states for the number of parallel FSM
units. As for the estimator implementation, we can further see
that the majority gate scheme reduces the supporting unit area
significantly compared to the parallel counter scheme in the
table.

VI. CONCLUSION

This paper proposed a parallelization scheme for the
stochastic computing sequential logic, the Finite State Ma-
chine. Using a look-up table dispatcher to set the initial states
of multiple FSMs, the parallel FSM can immediately work
from the steady state, avoiding the long convergence period.
We also proposed two kind of estimators for the dispatcher.
One of them, the parallel counter, requires larger hardware
area, but provides better estimation of the input value. The
other, using the majority gate, naturally fits the trend of steady-
state distribution with the input values, and also simplifies the
estimator hardware.

The proposed parallel scheme can effectively implement the
stochastic sequential logic FSM in parallel to reduce the long
calculation latency with some hardware overhead. Experiments
on three typical FSM functions show that the accuracy and
variance of the parallel FSM scheme are comparable to the
serial implementation. The parallel FSM scheme further shows
equivalent or better image quality than the serial implementa-
tion in two image processing applications. We conclude that
quickly initializing the FSM by estimating the initial state
using only a few bits of the input value allows parallelism
to be effectively exploited in stochastic logic that uses storage
elements.
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