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Abstract 
As the 2020 roadblock approaches, the need of 

breakthrough in computing systems has directed researchers 

to novel computing paradigms. The recently emerged 

reservoir computing model, delayed feedback reservoir (DFR) 

computing, only utilizes one nonlinear neuron along with a 

delay loop. It not only offers the ease of hardware 

implementation but also enables the optimal performance 

contributed by the inherent delay and its rich intrinsic 

dynamics. The field of deep learning has attracted worldwide 

attention due to its hierarchical architecture that allows more 

efficient performance than a shallow structure. Along with 

our analog hardware implementation of the DFR, we 

investigate the possibility of merging deep learning and DFR 

computing systems. By evaluating the results, deep DFR 

models demonstrate 50%-81% better performance during 

training and 39%-64% performance improvement during 

testing than shallow leaky echo state network (ESN) model. 

Due to the difference in architecture, the training time of MI 

(multiple inputs)-deep DFR requires approximately 21% 

longer than that of the deep DFR model. Our approach offers 

the great potential and promise in the realization of analog 

hardware implementations for deep DFR systems. 
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1. Introduction 
The rapid evolvement of computing systems was perfectly 

predicted by Moore’s law during past few decades. However, 

it has been observed that the rate of enhancement is starting 

to saturate and slow down which indicates the end of Moore’s 

prediction due to the fundamental physical limits of the chips. 

This phenomenon is also known as the 2020 roadblock [1]. 

The need of breakthrough directed researchers to a new path 

and to reconsider how biological systems, from living 

organism to human beings, process information.  

To mimic the brain neurology, the artificial neural 

network (NN) [2] is built whereby electronic circuits are used 

to model the biological neural networks. In the early 1940s, a 

neurophysiologist and a mathematician, Warren McCulloch 

and Walter Pitts, published a paper on modeling neural 

network using electrical circuits [3]. Training NNs generally 

requires a lot of data. However, at that time, the data storage 

and computational capability did not facilitate the 

development of NNs. Nowadays, with the explosion of data 

and supercomputers, such as Tianhe-2 [4], the technology is 

up to the right standard allowing researchers to investigate on 

NNs. Designing novel and revolutionary computing systems 

that possess as low power consumption as possible has been 

a tantalizing goal for dedicated researchers. In the endeavor 

to approach this goal, neuromorphic computing was proposed 

by Carver Mead in the 1980s which is defined as the very-

large-scale-integrated (VLSI) circuits that mimic the 

mammalian neurology [5]. To reduce the complexity of 

recurrent neural networks (RNNs), the reservoir computing 

architecture has been proposed in the field of machine 

learning. Unlike RNNs, synaptic connections within the 

reservoir are not trained whereby randomly generated 

weights are assigned. Although reservoir computing models 

drastically reduced the training process in RNNs, the 

hardware realization of reservoir computing systems is 

hindered by thousands of nonlinear neurons within the 

reservoir. 

Inevitably, delay is omnipresent, especially in biological 

systems. For instance, approximately 20 ms of the 300 ms 

delay in the pupil light reflex can be accounted for by axonal 

conduction time, which is the time delay between two 

neurons [6]. Recently, another reservoir computing model 

called delayed feedback reservoir (DFR) computing has 

emerged. This model utilizes a single nonlinear neuron and 

delayed feedback to create a reservoir with a ring topology. 

The introduction of delay enables the Mackey-Glass (MG) 

function to handle time-delayed feedback structures in a way 

that mimics biophysical processes in biological neurons. Such 

system showed its potential to be served as the reservoir for 

reservoir computing in [7]. While DFRs offer simplification 

in hardware implementations due to the ring topology, most 

research focuses on photonic systems. They lack energy 

efficient integrate circuit design on hardware 

implementations. 

In this paper, we introduce our analog hardware 

implementation of the DFR. The field of deep learning has 

attracted worldwide attention due to its hierarchical 

architecture that allows more efficient performance than a 

shallow structure, not only on accuracy but also the 

processing speed [8]. Along with the analog implementation 

of DFR, we investigate the possibility of merging deep 

learning and DFR. Two deep DFR structures, deep DFR and 

MI (multiple inputs)-deep DFR, are proposed and evaluated 

under two different time series predictions with the leaky 

echo state network (ESN) as the baseline comparison. From 

the performance evaluation, deep DFR structures outperform 

the shallow leaky ESN on both time series prediction tasks. 

With the existing analog implementation of DFR and 

proposed deep structures, our approach offers the great 

potential and promise in the realization of analog hardware 

implementations for deep DFR systems. 



2. Deep Delayed Feedback Reservoir Computing 
The field of deep learning has attracted worldwide 

attention due to its hierarchical architecture that allows more 

efficient performance than a shallow structure, not only on 

accuracy but also the processing speed [8]. The superior 

performance is a result of its intrinsic deep structure. Deep 

neural networks (DNNs) are constructed by multiple layers 

working in a fashion of processing pipeline [9]. Deep learning 

architecture has proven to have exceptional performance in 

high-dimensional data that is applicable to many fields, 

ranging from business to science [2]. Many performance 

records are broken by deep learning architectures in 

applications of image recognition, handwritten recognition 

[2, 9, 10]. The depth is generally defined as stacking multiple 

hidden layers in between the input and output layers. This 

could either defined in time or space.  

RNNs could also be defined as a variant of DNNs. For 

RNNs, the depth arises from inherent recurrent connections, 

which lead to depth in time. However, the training process of 

such NNs is considered complex and time-consuming. In an 

endeavor to reduce the complexity of RNNs, reservoir 

computing architecture has been proposed in the field of 

machine learning. The architecture of the reservoir is based 

on the RNN. Unlike the RNNs, the connections within the 

reservoir are not trained whereby randomly synaptic weights 

are assigned. The input connections serve as the scaling of the 

input signal and transfer the scaled signal to the reservoir. 

Within the reservoir, nodes are connected in a random manner 

whereby the nonlinear mapping takes place. Two well-known 

reservoir computing models, echo state network (ESN) and 

liquid state machine (LSM), employ the strength of RNNs as 

their reservoir or liquid in which the synaptic connection 

within these layers are not trained. By only training the output 

weights, the complexity of training process has greatly 

reduced resulting in less computation power. Any reservoir 

computing systems should possess two properties, 1) high 

dimensionality, and 2) short-term memory [11]. Reservoir 

computing systems have shown its performance capabilities 

in various applications [12-14]. 

In reservoir computing, RNNs are adapted as the reservoir 

or so-called hidden layer. Hence, traditional reservoir 

computing systems are all deep in time. Recently, another 

reservoir computing model called the DFR computing has 

emerged. This model utilizes a nonlinear neuron and delayed 

feedback to create reservoirs with a ring topology. In this 

paper, we evaluate the intrinsic dynamics of the DFR model, 

introduce the analog hardware implementation of single DFR, 

and investigate its possibility of merging deep learning and 

DFR.  

2.1. Delayed Feedback Reservoir 
Delay is ubiquitous in almost every system, especially 

biological systems from diffusion or transport of substances 

conduction time of nerves, to intrinsic times for synthesis, 

growth, and reproduction [6]. For instance, approximately 20 

ms of the 300 ms delay in the pupil light reflex can be 

accounted for by axonal conduction time, which is the time 

delay between two neurons [6]. 

The DFR computing, which is constructed by a single 

nonlinear neural node with dynamic delay loop, has shown its 

comparable performance to other traditional reservoir 

computing models. With the delay embedded in the system, 

DFR does not only have a resemblance to human brains and 

ease of hardware implementation but also exhibits near 

chaotic regime behavior, which is known as the edge of 

chaos. Different from the traditional reservoir, DFR possesses 

a ring topology. The input will be injected along with a 

masking scheme directly to the nonlinear node whereby the 

nonlinear mapping takes place. The output is then obtained 

through output weights. The training is commonly done by 

minimizing the mean square error using linear regression 

[15]. In [7], simulation results have shown the performance 

of DFR is equivalent to that of traditional reservoir computing 

model, ESN. 

The governing equation for DFR is expressed in the form 

of, 

𝑥̇(𝑡) = −𝑥(𝑡) + 𝑓(𝑥(𝑡 − 𝜏), 𝐼(𝑡), 𝜃) (1) 

where f is a nonlinear differentiable function, also known as 

the nonlinear mapping, 𝜏 is the delay, 𝑥(𝑡) is the states of 

DFR, 𝐼(𝑡) is the input signal along with a masking scheme 

that injects into the DFR. In our work, the nonlinear function 

is chosen to be the MG function. Within the delay loop, the 

total delay time, 𝜏, is divided by 𝑁 equidistant delay units, 

which can be expressed as: 

 

 
𝜏 = 𝑁 ∙ 𝜃  (2) 

where 𝜃 is the time interval between each virtual node. 

2.2. Analog Integrate Circuit Design  
In traditional reservoir computing, thousands of nonlinear 

neurons are needed to carry out tasks with adequate 

performance. Although reservoir computing reduces the 

complexity of RNNs, in hardware implementation sense, 

thousands of nonlinear neurons imply modifying thousands 

of parameters [16]. This leads to challenging hardware 

implementation; hence, scarce research on the hardware 

implementation of reservoir computing. Different from 

reservoir computing, due to the ring topology of DFR, the 

number of nonlinear nodes is drastically reduced. With only 

single nonlinear node simplification, DFR is much easier to 

be implemented in electronics [7, 16, 17]. Most hardware 

implementations are focused on photonic chips for DFR 

systems. The realization of DFR on analog hardware 

implementation lacks investigation. In our work, we 

successfully implemented the DFR onto analog hardware. 

 

Figure 1: Delayed Feedback Reservoir Computing 



In our analog hardware implementation of a single layer 

DFR model, there are two important design features, 

nonlinear node and delay loop respectively. These circuits are 

shown in Figure 2. 

The nonlinear node is comprised of an input trigger (𝑀1 

and 𝑀2) with a first order passive low-pass filter (𝑅1 and 𝐶1), 

a nonlinear mapping transformer (𝑅2  and 𝐶2 ), a feedback 

current mirror ( 𝑀3~𝑀5 ) and an output current mirror 

(𝑀6~𝑀8), as illustrated in Figure 2. In the reset operation, the 

input is charged up to 𝑉𝐷𝐷, which deactivates the input trigger 

of the nonlinear device to discharge the nonlinear mapping 

transformer, thus, the output current, 𝐼𝑜𝑢𝑡 , is reset to 0 A. In 

the decision-making operation, the inverted spike-based input 

signal is firstly filtered by the passive low-pass filter.  

Once the input trigger is enabled, the input current, 𝐼𝑅𝐶 , 

continues to charge up the nonlinear mapping transformer to 

regulate the biasing voltage, 𝑉𝑅𝐶 , of 𝑀7; consequently, the 

drain-to-source voltage, 𝑉𝐷𝑆 , of 𝑀7  increases quickly and 

eventually reaches its saturation potential level. While 𝑀7 is 

within its sub-threshold region (𝑉𝑅𝐶 < 𝑉𝑡ℎ7, where 𝑉𝑡ℎ7 is the 

threshold voltage of 𝑀7 ), the 𝑉𝐷𝑆  of 𝑀7  is nearly 0 V, the 

diode-connected structure of 𝑀6  fully enables the output 

current mirror to achieve the maximum output current. 

Contrarily, as the 𝑉𝐷𝑆  of 𝑀7  reaches its saturation potential 

level, the transistor 𝑀6 is fell into its sub-threshold region, 

which starts reducing the output current. Meanwhile, the 

feedback current mirror generates a high voltage at 𝑉𝐹𝐵  to 

disenable the input trigger; consequently, this positive 

feedback loop quickly reduces the output current to 0 A until 

the next process takes place. As such, the nonlinear 

transformation of one input spike is completed.  

With the nonlinear node and delay line, we built a 

complete single DFR circuit model. The nonlinear 

transformation is mainly achieved by the charging and 

discharging process of the nonlinear mapping transformer; in 

other words, the nonlinearity of the transfer function is 

proportional to the time constant, 𝜏𝑁𝐷 , of resistor and 

capacitor. In the integrate-and-fire-based delay unit, the delay 

time is regulated by the integrating time of membrane 

capacitor. The delay time constant, 𝜏𝑑𝑒𝑙𝑎𝑦 , can be expressed 

as, 

𝜏𝑑𝑒𝑙𝑎𝑦 = 𝐶𝑚 ∙ 𝑅𝑖𝑛      (3) 

where 𝐶𝑚 is the membrane capacitance, 𝑅𝑖𝑛 is the input 

impedance. 

2.3. Intrinsic Dynamic of Nonlinear System  
As aforementioned, the MG function is employed as the 

nonlinear mapping function in the DFR. MG function was 

originally created to cope with diseases that exhibit symptom 

with oscillatory instabilities [18]. The governing equation for 

MG function is given as, 

𝑑𝑥

𝑑𝑡
=

𝑎𝑥(𝑡−𝜏)

1+𝑥(𝑡−𝜏)𝑛 − 𝑏𝑥(𝑡)   (4) 

where 𝑎, 𝑏 are design parameters, and 𝑛 is the nonlinearity 

exponent. Figure 3 shows a simplified block diagram for MG 

function. 

 

Figure 3: Simplified block diagram of MG function 

The introduction of delay enables the MG function to 

handle time-delayed feedback structures in a way that mimics 

biophysical processes in the biological neuron. Such system 

showed its potential to be served as the reservoir for reservoir 

computing in [7]. Such system is described by delay 

differential equation (DDE). DDE equation is generally 

expressed as, 

𝑑𝑦

𝑑𝑡
= 𝑓[𝑦(𝑡), 𝑦(𝑡 − 𝜏)]              (5) 

where f is an arbitrary function, which can be either linear or 

nonlinear function depending on the application, and τ is the 

time delay.  

The reason that MG function is chosen is not only due to 

its inherent delay feature but also its rich intrinsic dynamics. 

The best computational performance occurs in the transition 

region between the stable and the chaotic regimes, which is 

known as the "edge of chaos".  The introduction of delay 

enables the MG function to handle time-delayed feedback 

structures in a way that mimics biophysical processes in the 

biological neuron. Such system showed its potential to be 

served as the reservoir for reservoir computing in [7]. Both 

high dimensionality and short-term memory are achieved by 

delayed systems. 

To closely examine dynamic behaviors, the solution to the 

DDE equation carried out. The dynamic behavior of the 
 

Figure 2: Analog Circuits for single layer DFR model 



nonlinear function is modeled by the DDE with varied delay 

time, as demonstrated in Figure 4.  

 

Figure 4: Dynamic behavior of nonlinear function when 

(a)𝜏 = 3; (b) 𝜏 = 12; (c) 𝜏 = 16; (d) 𝜏 = 20. 

As plotted in Figure 4, the solution converges to an 

equilibrium state when the delay is small. The dynamic 

behavior varies accordingly as the delay starts to increase. 

With the increasing of time delay, the dynamic alters from 

periodic to chaotic as shown in Figure 4(a) to (d). 

The phase portrait is a representation of the solutions 

tracing the path of each particular solution. It is a graphical 

tool to visualize how the solutions of a given system of 

differential equations would behave in the long run. In other 

words, phase portrait is a tool to track the dynamic behavior 

of a system’s solutions. By varying the time delay, the phase 

portraits are illustrated in Figure 5. 

 
Figure 5: Phase portrait of dynamic system in (a) 𝜏 = 12; (b) 

𝜏 = 14; (6) 𝜏 = 16; (d) 𝜏 = 18; (e) 𝜏 = 20; (f) 𝜏 = 22. 

As demonstrated in Figure 5, the change in dynamic 

behavior can be clearly observed. As delay increases, the 

dynamic behavior varies from ordered to the edge of chaos to 

completely chaotic. 

2.4. Deep Delayed Feedback Reservoir 
 For DFR computing systems, depth in time arises from 

the delayed signal that combines with the new input. 

However, for both RNNs and DFRs, single reservoir does not 

create any depth in space. Similar to stacking feedforward 

neural networks in deep learning field, depth in space could 

also be achieved by stacking multiple reservoirs on top of 

each other between the input and output layers. 

Along with the analog implementation of DFR, we 

investigate the possibility of merging deep learning and DFR. 

Two deep DFR structures, deep DFR and MI-deep DFR, are 

proposed. In the deep DFR model, the output from the 

previous layer will be injected into the successive reservoir 

layers. The governing equation is expressed as, 

𝑥1
𝑙̇ (𝑡) = −𝑥1

𝑙 (𝑡) + 𝑓(𝑥1
𝑙 (𝑡 − 𝜏), 𝐼1

𝑙(𝑡), 𝜃) (6) 

where 𝑥1
𝑙 (𝑡) is the state at l-th layer, 𝜃 is the time interval 

between each virtual node; f is the nonlinear mapping 

function which is using the MG nonlinear function as shown 

below, 

𝑓(𝑥1
𝑙 , 𝐼1

𝑙) =
𝑎(𝑥1

𝑙 +𝐼1
𝑙 )

1+(𝑥1
𝑙 +𝐼1

𝑙 )
𝑛     (7) 

where 𝐼1
𝑙  is the input signal that injects to each layer for deep 

DFR model, the input signal is organized as, 

𝐼1
𝑙 = {  

𝑚𝑢1(𝑡)                  𝑓𝑜𝑟 𝑙 = 1

𝑥1
𝑙−1(𝑡)                  𝑓𝑜𝑟 𝑙 > 1

 (8) 

where 𝑢1(𝑡) is the original input signal, m is the masking, 

𝑥1
𝑙−1(𝑡)  is the output states from the previous layer. This 

topology of deep DFR model is illustrated in Figure 6(a). 

The other deep structure of DFR is similar to deep DFR, 

but the input will be injected into each layer along with the 

output states from the previous layer. By adding external 

input to each reservoir layer, each layer would have a more 

recent memory of the input signal. This might be useful when 

carrying out prediction tasks. To verify this, two time series 

prediction tasks carried out to evaluate the computational 

performance of each deep DFR model. The governing 

equation for this multiple inputs-deep DFR (MI-deep DFR) is 

expressed as, 

𝑥2
𝑙̇ (𝑡) = −𝑥2

𝑙 (𝑡) + 𝑓(𝑥2
𝑙 (𝑡 − 𝜏), 𝐼2

𝑙 (𝑡), 𝜃)    (9) 

where 𝑥2
𝑙 (𝑡) is the state at l-th layer, 𝜃 is the time interval 

between each virtual node; f is the nonlinear mapping 

function which is using the MG nonlinear function as shown 

below, 

𝑓(𝑥2
𝑙 , 𝐼2

𝑙 ) =
𝑎(𝑥2

𝑙 +𝐼2
𝑙 )

1+(𝑥2
𝑙 +𝐼2

𝑙 )
𝑛    (10) 

where 𝐼2
𝑙  is the input signal that injects to each layer for MI-

deep DFR model, the input signal is organized as, 

𝐼2
𝑙 = {

𝑚𝑢2(𝑡)                  𝑓𝑜𝑟 𝑙 = 1

  [𝑚𝑢2(𝑡) 𝑥2
𝑙−1(𝑡)]𝑇                  𝑓𝑜𝑟 𝑙 > 1

    (11) 

where 𝑢2(𝑡) is the original input signal, m is the masking, 

𝑥2
𝑙−1(𝑡)  is the output states from the previous layer. This 

topology of MI-deep DFR model is illustrated in Figure 6(b). 

3. Performance Evaluation 
To evaluate the performance of these two deep DFR 

models, two time series prediction tasks carried out to study 

the performance of deep DFR systems. Time series prediction 

tasks are important in real-world applications not only in the 

engineering field but also in medical care [19, 20]. The 

computational abilities of proposed deep DFR models are 

examined using the normalized root mean square error 

(NRMSE) which is then compared to a baseline comparison 

model. Each deep DFR model contains 4 reservoir layers with 

10 virtual nodes. In this work, the baseline comparison model 

is constructed by a leaky ESN model [21]. The total number 

of neurons used in the leaky ESN model is 40, which is 

equivalent to the total number of virtual nodes in the deep 
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structures of DFR. The governing state equation for the leaky 

ESN is given as [21],  

𝑥(𝑡) = (1 − 𝑎)𝑥(𝑡 − 1) + 𝑎 tanh(𝑊𝑖𝑛𝑢(𝑡) + 𝑊𝑟𝑒𝑠𝑥(𝑡 −
1)) (12) 

𝑦(𝑡) = 𝑊𝑜𝑢𝑡𝑥(𝑡)  (13) 

where 𝑎 is the leakage term, 𝑊𝑖𝑛 is the input weight, 𝑊𝑟𝑒𝑠 is 

the weight in reservoir. 

 
Figure 7: Target signal vs. predicted signal for (a) Santa Fe 

time series using leaky ESN; (b) Santa Fe time series using 

deep DFR; (c) Santa Fe time series using MI-deep DFR; (d) 

ECG using leaky ESN; (e) ECG using deep DFR; (f) ECG 

using MI-deep DFR 

The first prediction task is the Santa Fe time series which 

is a typical benchmark test in the field of machine learning 

[16, 22]. The Santa Fe dataset utilized in the task contains a 

total of 6600 values, which are generated by a laser working 

in the chaotic region. The dataset is divided into three 

portions, 100 values are used for initialization, 4000 samples 

are used for training, and 2500 samples are used for testing.  

The other prediction task carried out is the prediction of 

ElectroCardioGram (ECG) signal. The dataset consists of 

7100 points whereby 100 samples are used for initialization, 

5000 samples are used for training, and the rest samples are 

used for testing. Figure 7 shows a portion of the testing results 

for both Santa Fe and ECG time series prediction tasks. The 

outputs from the virtual nodes are linearly combined through 

output weights. During the training process, the output 

weights are trained by minimizing the deviation of the 

predicted output to the target signal or correct output signal. 

After the training, testing carries out using the trained output 

weight. Both training and testing errors are obtained by 

computing the NRMSE, which uses the following equation, 

𝑁𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁

𝑖=1

𝑁𝜎𝑦̂
2   (14) 

where 𝑦𝑖 is the predicted output, 𝑦̂𝑖 is the correct output, 𝑁 is 

the total length of testing, 𝜎𝑦̂
2 is the variance of correct output. 

The training time for deep DFR models is normalized with 

respect to the training time of leaky ESN model. 
 

Table 1: Training results comparison for different models 

Model 
Santa Fe 

NRMSE 

ECG 

NRMSE 

Normalized 

Training Time 

Leaky ESN 0.0896 0.0831  

Deep DFR 0.0213 0.0418 0.45X 

MI-deep DFR 0.0167 0.0319 0.57X 

 

Table 2: Testing results comparison for different models 

Model 
Santa Fe 

NRMSE 

ECG 

NRMSE 

Leaky ESN 0.0914 0.0917 

deep DFR 0.0508 0.0561 

MI-deep DFR 0.0395 0.0328 
 

The training and testing results for each model are 

tabulated in Table 1 and 2. As can be seen in Table 1, MI-

deep DFR exhibits the lowest NRMSE for both prediction 

tasks among these three models during training. It is clear that 

in both prediction tasks, training NRMSEs for deep DFR 

models are lower than that of leaky ESN. By evaluating 

 
(a) deep DFR model 

 
(b) MI-deep DFR (multiple inputs-deep DFR) 

Figure 6: Illustration of deep DFR models: (a) deep DFR; (b) MI-deep DFR 



training results, deep DFR models show 76%-81% better 

performance than shallow leaky ESN model in Santa Fe time 

series prediction task. Whereas in ECG prediction task, deep 

DFR models exhibit 50%-62% performance improvement. 

Although MI-deep DFR illustrates better computational 

ability than that of the deep DFR model, the training time of 

MI-deep DFR requires approximately 21% longer than that 

of deep DFR. Due to the difference in architecture, there is a 

tradeoff between accuracy and training time. 

In Table 2, testing NRMSEs are listed for different 

models. During testing stage, deep DFR models exhibit 44%-

57% better performance in Santa Fe time series prediction 

task compared to that of shallow leaky ESN model. In ECG 

prediction task, the testing performance of deep DFR models 

shows 39%-64% improvement than the shallow model.  

4. Conclusion 
In this paper, we introduced our analog hardware 

implementation of a single DFR model with MG nonlinear 

node and a delay loop. Along with the analog implementation 

of DFR, we investigate the possibility of merging deep 

learning and DFR. Two deep DFR structures, deep DFR and 

MI-deep DFR, are proposed. The computational capability of 

these two deep DFR models is tested using two time series 

prediction tasks, Santa Fe time series and ECG time series 

respectively. The results are then compared to the shallow 

baseline model, leaky ESN with an equivalent number of 

neuron nodes. In general, deep architectures exhibit lower 

NRMSE than that of shallow leaky ESN model.  Due to the 

difference in deep architecture, there is a tradeoff between 

accuracy and training time.  
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