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Major applications

Self-driving Cars Cybersecurity
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Self-driving Cars

¢ Cars incorporating systems to assist or replace drivers
O Ex. automatic parking, Waymo

¢ Self-driving cars with ML infrastructure will become commonplace
O Ex. NVIDIA DRIVETM PX 2 — open Al car computing system
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Mcdaniel et.al., “Machine Learning in Adversarial Settings”,2016.



Imaging

Healthcare Applications -§ o
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prediction for drug discovery." Cell chemical biology (2018)
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Cybersecurity

Spam Filtering

* http://www.thenonprofittimes.com/news-articles/rate-legit-emails-getting-
caught-spam-filters-jumped/
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Facial Recognition

*¢* Secure Authentication and Identification
O Apple FacelD
O FBIl database — criminal identification

** Customer Personalization
O Ad targeting
O Snapchat
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Taigman et.al.,“DeepFace: Closing the Gap to Human-Level Performance in Face Verification”,2014
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Other Machine Vision Applications
(o]

¢ Digital annotation of real-world Google Lens
0 Text, language recognition — E.g.
Billboards, auto-translation

o QLA cITy
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O Geo-tagging Landmarks

O Integration with other services — E.g.
ratings for restaurant, directions

¢ Augmented Reality

O Gaming — adaptive integration with
real-world

O Augmented Retail — E.g. Clothes
Fitting




Speech Recognition

*¢* Envisioned in science fiction since 1960’s
O HAL 9000, Star Trek

¢ Natural Language Processing (NLP) has gained increased importance
O Modeling large vocabularies, accents — translation, transcription services

O Smartphones — Apple Siri, Google Assistant, Samsung Bixby
O Home - Amazon’s Echo/Alexa, NLP
0O |B|V| WatSOn automatic speech re?gﬂ?t?ofwng{i\tlzm
recognition (ASR) 5 _ N LU
part-of-speech relation
tagging (POS) extraction paraphrase &
tacti natqral language
text Sggrgicr:wlgc semantic inference
categorization :
parsing dialogue
coreference sentiment agents
resolution analysis
text-to-speech hi question
(TTS) t,-r:s;alt?gn answWerTTISNE summarization

http://nlp.stanford.edu/~wcmac/papers/20140716-UNLU.pdf



Machine learning (ML) Process
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Machine Learning Security
and Privacy



Introduction

¢ ML algorithms in real-world applications mainly focus on
accuracy (effectiveness) or/and efficiency (dataset, model size)

O Few techniques and design decisions to keep the ML models secure and robust!

*¢ Machine Learning as a Service (MLaaS) and Internet of Things (loT)
further complicate matters

O Attacks can compromise millions of customers’ security and privacy

O Concerns about Ownership of data, model
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webservices



ML Vulnerabilities

¢ Key vulnerabilities of machine learning systems
O ML models often derived from fixed datasets
O Assumption of similar distribution between training and real-world data

= Coverage issues for complex use cases
= Need large datasets, extensive data annotation, testing

¢ Strong adversaries against ML systems
O ML algorithms established and public
O Attacker can leverage ML knowledge for Adversarial Machine Learning (AML)
= Reverse engineering model parameters, test data — Financial incentives
= Tampering with the trained model — compromise security



Classification of Security and Privacy Concerns

¢ Attack Influence
O Causative — manipulate training data to introduce vulnerability

O Exploratory — find and exploit vulnerability during classification

¢ Attack Specificity
O Targeted — focused on specific or small set of points

O Indiscriminate — flexible goals

¢ Security Violation
O Confidentiality — extract model parameters or private data
O Integrity — compromise model to produce false positives/negatives

O Availability — render model unusable



Security and Privacy Concerns
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Confidentiality



Training Data Confidentiality

*» Training data is valuable and resource-intensive to obtain
O Collection of large datasets
O Data annotation and curation
O Data privacy in critical applications like healthcare

¢ Ensuring training data confidentiality is critical

QUARTZ &bhe New Nork Times
Waymo’s driverless cars have Sloan Kettering’s Cozy Deal With
Iogged 10 million miles on pUbIIC Start.Up Ignites a New Uproar

roads By Charles Ornstein and Katie Thomas
By Jane C. Hu * October 10, 2018 Sep’[ 20, 2018



Confidentiality of Machine Learning Model

¢ Ensuring confidentiality of ML model is critical
O Model IP ownership - primary source of value for company/ service
* Cloud-based MLaaS models — highly lucrative for attackers
O Model confidentiality also ensures training data privacy

o+ Attacks

O Model Extraction Attack: Extract model parameters via querying the model.
Generate equivalent or near-equivalent model.

O Model Inversion Attack: Extract private and sensitive inputs by leveraging
the outputs and ML model.



Model Extraction

¢ Goal: Adversarial client learns close approximation, f’, of f using as

few queries as possible
O Service provider prediction APls themselves used in attack
= APIs return extra information — confidence scores

f’(x) = f(x) on 100% of inputs bi @
; ’ - - amazon
100s-1000’s of online queries U eh sarvices g
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p Attack | __x . Modelf
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* Logistic Regressions, Neural
Networks, Decision Trees, SVMs

* Reverse-engineer model type
& features

(©

* Tramer et.al., “Stealing Machine Learning Models via Prediction APIs.”, 2016.



Extraction Countermeasures

** Restrict information returned

O E.g. do not return confidence scores
O Rounding — return approximations where possible

¢ Strict query constraints
O E.g. disregard incomplete queries

*** Ensemble methods
O Prediction = aggregation of predictions from multiple models
O Might still be susceptible to model evasion attacks

¢ Prediction APl minimization is not easy
O API should still be useable for legitimate applications

* Tramer et.al., “Stealing Machine Learning Models via Prediction APIs.”, 2016.



Model Inversion Attack

** Optimization goal: Find inputs that maximize returned confidence
value to infer sensitive features or complete datapoints from a
training dataset
O Exploits confidence values exposed by ML APIs

An image recovered using a new model inversion attack (left) and a training set image of the
victim (right). The attacker is given only the person’s name and access to a facial recognition system
that returns a class confidence score.

* Fredrikson et.al., “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.”, 2015



Privacy of the Training or Test Data

¢ Extracting patients’ genetics from pharmacogenetic dosing models
O Queries using known information — E.g. demographics, dosage
O Guess unknown information and check model’s response - assign weights
O Return guesses that produce highest confidence score

age height | weight race history | vkorc1 | cyp2c9  dose

50-60 176.2 185.7 asian cancer A/G *1/*3 42.0

age height | weight race history | vkorc1 | cyp2c9 | dose
f(x) 50-50 | 17653 | 1442 | white 420 407 | p=0.23
50-59 | 176.53 | 144.2 white | _ | 420 42.0 p=0.75
°0

50-59 | 176.53 | 144.2 white 420 39.2 p=0.01

CYP2C9 4 IR O
VKORC1

_ . . ' age height :rweightl . race l history”vkorm -cyp2c9-_ dose 1
( ) | f) | 5059 [ 17653 | 1442 | white |Gancer fas | | 420 297 | p=0.23
f X, | 5059 | 17653 | 1442 | white | Hean ’cm s | 420 420 | p=0.75
race, age, Linear Model | 5059 | 17653 | 144.2 | white |Disbetes |a/a *2/*s 42.0 392 | p=0.01
weight,

Fredrikson et.al., “Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing ”, 2014.




Inversion Countermeasures

¢ Incorporate model inversion metrics to increase robustness

O Identify sensitive features

O Analyze effective feature placement in algorithm — E.g. sensitive features at top of
a decision tree maintain accuracy while preventing inversion from performing
better than guessing

O Approximate/ Degrade confidence score output — E.g. decrease gradient
magnitudes

= Works against non-adapting attacker

¢ Ensuring privacy needs to be balanced against usability
O Privacy Budget

¢ Differential Privacy mechanisms using added noise

O Might prevent model inversion
O Risk of compromising legitimate results in critical applications



Integrity



Introduction

¢ Ensuring Integrity of a Machine Learning model is difficult

O Dependent on quality of training, testing datasets
= Coverage of corner cases
= Awareness of adversarial examples

O Model sophistication — E.g. small model may produce incorrect outputs

O Lifetime management of larger systems
= Driverless cars will need constant updates
= Degradation of input sensors, training data pollution

¢ Adversarial examples may be Transferable *

O Example that fools Model A might fool Model B
O Smaller model used to find examples quickly to target more sophisticated model

Papernot et. al., “Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples”, 2016



Integrity Attacks

** Adversary can cause misclassifications of attacks to appear as normal
(false positives/ negatives)
O Attack on training phase: Poisoning (Causative) Attack: Attackers attempt to learn,
influence, or corrupt the ML model itself
= Compromising data collection
= Subverting the learning process
= Degrading performance of the system
= Facilitating future evasion

O Attack on testing phase: Evasion (Exploratory) Attack: Do not tamper with ML
model, but instead cause it to produce adversary selected outputs.

* Finding the blind spots and weaknesses of the ML system to evade it



Adversarial Detection of Malicious Crowdsourcing

¢ Malicious crowdsourcing, or crowdturfing used for tampering legitimate

applications
O Real users paid to promote malicious intentions
O Product reviews, Political campaigns, Spam

¢ Adversarial machine learning attacks
O Evasion Attack: workers evade classifiers
O Poisoning Attack: crowdturfing admins tamper with training data

- e ="

Vietnam admits deploying bloggers to —
support government Training
(e.g. SVM)

By Nga Pham

—> Classifier

Training Data

THEVERGE
Samsung fined $340,000 for faking online :
comments

By Aaron Souppouris | Oct 24, 2013, 7:47am EDT

Wang et.al., “Man vs. Machine: Adversarial Detection of Malicious Cro«vcs:urcing Workers 7, 2014



Physical Perturbations

¢ Adversarial perturbations
detrimentally affect Deep Neural
Networks (DNNs)

) e . . | _ O N O SPEED
O Cause misclassification in critical Model Physical Dynamics by Sampling O 8 O Output %7
applications from Distribution O O ’ 45
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O Perturbations can be robust against
noise in system

¢ Defenses should not rely on --u RP; H Dmm
physical sources of noise as

Perturbed Stop Sign Under
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protectlon ‘
) Eykholt et.al., “Robust Physical-World Attacks on Deep Learning Visual Classification”,
O Incorporate adversarial examples 5018,

O Restrict model information/ visibility

O DNN DIStlllatlon - tranSfer Papernot et.al., “Distillation as a Defense to Adversarial Perturbations against Deep
knowledge from one DNN to another neural Networks”, 2015.

O Gradient Masking



Adversarial Attacks Against ASR DNNs

¢ Automatic Speech Recognition (ASR) and Natural Language
Understanding (NLU) increasingly popular — E.g. Amazon Alexa/ Echo

0 Complex model = Large parameter space for attacker to explore

N/

** Attacker goals
O Psychoacoustic hiding — perceived as noise by human
O Identify and match legitimate voice features 1 fomed st

' TDEACTIVATE SECURITY
1+ TAMERA AND UNLOCK

= Pitch, tone, fluency, volume, etc . FRONT DOOR"

O Embed arbitrary audio input With a :3. hearing thresholds : ;Tm]l.‘-'t'i'i]]Tiutll .

o . . : calculate | ! griginal andio ! =
malicious voice command i e 1 .

O Temporal alignment dependencies add complexity

O Environment/ System variability can affect attack - backpropagation.

ftwar s like Lyrebird can prov ful v ap  ARel e

O Software tools like Lyrebird can prove usefu | m | 32323%%%% B
v om e | E Y \gRAL

WH“ Lyrebird Lea et “Adversaial Attacks Against Automatic peech

Recognition Systems via Psychoacoustic Hiding”, 2018



Defenses Against AML

¢ Evasion
O Multiple classifier systems (B. Biggio et al., JMLC 2010)
O Learning with Invariances (SVMs)
O Game Theory (SVMs)

¢ Poisoning
O Data sanitization (B. Biggio et al., MCS, 2011)
O Robust learning (PCA)
O Randomization, information hiding, security by obscurity

** Randomizing collection of training data (timings / locations)
O using difficult to reverse-engineer classifiers (e.g., MCSs)
O denying access to the actual classifier or training data

O randomizing classifier to give imperfect feedback to the attacker (B. Biggio et al.,
S+SSPR 2008)



Availability



Model/ Dataset Dissemination

** Model access can be in 3 forms

O Local —Smartphone Al NPUs & A1 2
O Cloud — Amazon SageMaker, Microsoft SR
Azure ML
O Hybrid — Federated ML @ :
¢ Training datasets difficult to generate sageMaker Azure ML

O Open datasets — useful for small startups
= Lack details, annotations

0 Commercial datasets — no incentive to share
= Provides large advantage for provider

~
@t/

Source: Gboard - https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html



Attacker Goals

» Degrade learner’s performance
O Man-in-the-middle attack during Online Training
O Generate false positive/negatives for valid inputs

» Delay output availability in time-critical applications
= Driverless cars

** DDoS attacks on Cloud-based ML models may affect millions of
customers

» Access and timing control needed
O Authentication of training sources
O Default defensive response for delayed output



Federated ML

*» Allows edge devices to update
model

O
O
O

No centralized data
Training data stays local

Averaging to generate new shared
model

= Secure Aggregation needed

Issue of up-to-date access across all
connected devices

= Bandwidth, latency, scheduling

Cross-compatibility with different
models for same application is difficult

s Still in development

O
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Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (B) to form a

=

consensus change (C) to the shared model, after which the procedure is repeated.

Source: https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html



Ensuring Future Robustness of
Machine Learning Model



Future Research Areas

s Complexity of Machine Learning itself an issue
O New attacks models constantly emerging — timely detection critical
O Generation and incorporation of Adversarial Examples

O Data Privacy is crucial to enhance ML security
= Differential Privacy has tradeoffs
= Homomorphic Encryption still nascent

¢ Security introduces overhead and can affect performance
O Optimizations needed to ensure ML effiency

¢ Tools to increase robustness of Machine Learning need research

O Unlearning, re-learning
O ML Testing
O Sensitivity Analysis



Unlearning and Re-learning

** Ability to unlearn is gaining importance
O Pollution attacks or carelessness — Mislabeling and Misclassification
= Large changing datasets difficult to maintain
= Anomaly detection not enough
EU GDPR regulations — Privacy
Completeness and Timeliness are primary concerns *
Statistical Query Learning™ and Causal Unlearning** proposed in literature

0]
o)
o)
O Suitable for small deletions

4

* Re-learning or Online learning

O Faces similar issues to un-learning

O Can be very slow

O More suitable for large amounts of deletions or new information

®

*Yinzhi Cao, “Towards Making Systems Forget with Machine Unlearning”, 2015
** Cao et. al., “Efficient Repair of Polluted Machine Learning Systems via Causal Unlearning”, 2018



ML Testing — Fuzz Testing

** Provide invalid, unexpected or random data to identify defects and
vulnerabilities
O Fuzz Testing works well with structured inputs

¢ Fuzzing can identify exploitable ML implementation bugs [1]
O Valid inputs can compromise system
O Points of attack
= |Insufficient integrity checks during Feature Extraction
= Overflow/Underflow
= NaN, Loss of precision
O Vulnerabilities found in many open-source packages — OpenCV, Scikit-learn

** Fuzz Testing can aid security of general-purpose DNNs [2]
0 Automation and parallelization important — DNNs can be very big

O Input mutations and coverage-criteria based feedback guidance specific to DNNs allow
detection of corner-cases

[1] Stevens et.al, “Summoning Demons : The Pursuit of Exploitable Bugs in Machine Learning”, 2017.
[2] Xie et.al,“DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing”, 2018.



Sensitivity Analysis

¢ Study of how the uncertainty in the output of a system can be attributed
to different sources of uncertainty in its inputs

O ML feature extraction sensitivity analysis well-researched

** Detection of biases in training/test datasets is crucial *

O Model accuracy dependent on datasets used — real-world performance can be
different

= Datasets can have expiration dates
= Privacy issues can render datasets incomplete

O Identify training datasets which generalize better
O Study sensitivity of ML accuracy to change in datasets

* Sanders, Saxe, “Garbage In, Garbage Out - How Purportedly Great ML Models Can Be Screwed Up By Bad Data”, 2017



Conclusion

*

* ML supply chain and revenue model is evolving
O |P protection issue

0

4

®

* Protecting training data set and model IP is necessary for confidentiality

®

4

®

* Protection against evasion, poisoning attacks is necessary for integrity

L)

4

®

» Real-time and robustness guarantees are necessary for availability

®
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