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Abstract—The rapid adoption of Layer 2 (L2) blockchain
scaling solutions, such as optimistic rollup (OR), have introduced
new vulnerabilities that compromise the security and efficiency
of blockchain. In this work, we introduce a critical security
vulnerability in the OR system, where attackers exploit remote
procedure call (RPC) address manipulation to deceive verifiers
into challenging legitimate state roots. By altering the sender’s
RPC address during transaction processing delays, attackers
create a false perception of fraud, resulting in unwarranted chal-
lenges and penalties for verifiers, thereby undermining the pro-
tocol’s integrity. To mitigate this flaw, we propose ROLLGUARD,
a graph machine learning (ML) approach that dynamically
models interactions within the blockchain as a graph, with nodes
representing senders and receivers (RPC endpoints). Utilizing a
graph neural network (GNN), this method detects unusual RPC
address changes by analyzing real-time and historical transaction
patterns, enabling proactive identification of potential attacks.
The GNN flags anomalous behavior in RPC address updates,
offering early alerts to verifiers and reducing false challenges.
Our experimental results show that ROLLGUARD framework
significantly enhances protocol security, lowering false-positive
challenge rates and protecting verifiers from undue penalties.

Index Terms—Blockchain, optimistic rollup, graph neural
network, machine learning

I. INTRODUCTION

Blockchain technology has seen widespread adoption due
to its decentralized, secure, and transparent nature. How-
ever, as blockchain networks grow, they encounter scalability
challenges, leading to slower transaction speeds and higher
costs [1]. To address these limitations, Layer 2 (L2) scaling
solutions, such as optimistic rollups (ORs), have been devel-
oped to increase throughput while maintaining security [2].
ORs achieve scalability by processing transactions off the main
chain and periodically submitting a condensed state root to
the Layer 1 (L1) blockchain for validation [3]. While this
approach enhances transaction efficiency, it also introduces
new vulnerabilities that can be exploited by attackers to
compromise network reliability.

OR protocols depend on the remote procedure call (RPC)
endpoints [4] to relay transaction data to aggregators. Prior
research has identified security risks associated with RPC
endpoints, such as unauthorized access and manipulated re-
sponses. Cheng et al. [5] demonstrated how unprotected JSON-
RPC endpoints in Ethereum nodes can be exploited by attack-
ers to initiate unauthorized Ether and ERC-20 token transfers
by sending maliciously crafted RPC requests. Additionally,
a study by Chainstack [6] highlighted the exposure of RPC
endpoints in decentralized applications (DApps), emphasizing
the risk of unauthorized access and data breaches due to

inadequate security measures. Furthermore, Li et al. examined
how vulnerabilities in RPC services could be leveraged to dis-
rupt decentralized applications [7], leading to denial-of-service
attacks and other malicious activities. However, a more sophis-
ticated attack vector—RPC address manipulation—remains
unexplored. In this paper, we identify and examine a critical
vulnerability in the OR protocol, where attackers can exploit
the RPC address feature to manipulate transaction verification.

Specifically, this attack leverages the delay in transaction
processing between the validation of a transaction batch by
aggregators and the submission of the corresponding state
root to verifiers on the L1 chain for verification. During
this delay, an attacker, being the sender of one or more
transactions, alters its RPC address, creating a discrepancy
that misleads verifiers into challenging a legitimate state root.
Such challenges, though incorrect, lead to the slashing of
verifier stakes, effectively penalizing them while reducing the
system’s throughput incurred due to dispute phases. This RPC
manipulation exploit not only results in unnecessary verifier
losses but also undermines confidence in the OR protocol by
exploiting a fundamental flaw in its design.

To address this vulnerability, we propose ROLLGUARD, a
defense mechanism that utilizes graph machine learning (ML)
to detect abnormal patterns in RPC address changes. The
ROLLGUARD framework models OR interactions as a dynamic
graph, where nodes represent senders and receivers (RPC end-
points) and edges represents the RPC update relation history.
ROLLGUARD leverages a graph neural network (GNN) [8] to
analyze both real-time and historical RPC endpoint update
patterns, effectively identifying irregular changes in RPC ad-
dresses that indicate potential manipulation. The GNN flags
transactions with unusual patterns for further review before
challenges are initiated. This graph ML-based approach en-
ables proactive detection, reducing false-positive challenges
and minimizing the risk of unwarranted penalties for verifiers.
Our contributions are three-fold:

• We identify a novel security vulnerability in ORs, where
attackers exploit RPC address manipulation to deceive
verifiers and impact the L2 throughput.

• We develop and validate ROLLGUARD, a graph ML-based
framework to defend against this attack, enhancing the
security and resilience of the OR protocol.

• We conduct extensive experimental evaluations demon-
strating that ROLLGUARD significantly reduces false-
positive challenge rates, safeguarding verifiers from un-
due penalties while maintaining high protocol throughput.

Section II provides the necessary background information,

1



Layer 2 (Off-chain) Layer 1 (On-chain)

Main Blockchain

User 1 User 2

Smart
Contract

Deposit L1 coins (CL1)

L2 tokens (tL2)

Aggregators

TX2,CL1

Rollup
data

Verifiers

Validate, execute,
compress, and

bundle TXs
New state root of

L2 Blockchain

Challenge?

No

D
is

pu
te

Ph
as

eYes

TX2,tL2

TX1,tL2

Bedrock's
Mempool

Fig. 1. Optimistic Rollup workflow.

while related works are reviewed in Section III. The RPC
manipulation attack is introduced in Section IV. Section V
presents the technical details of the proposed defense, ROLL-
GUARD. Empirical analysis and findings are discussed in
Section VI. Finally, the paper is concluded in Section VII.

II. BACKGROUND

In this section, we present some preliminary concepts that
will help explain the attack and corresponding defense.

A. Rollups

Blockchain rollup is a scaling solution that addresses the
scalability limitations of traditional blockchain networks by
bundling multiple transactions or smart contracts together
before processing them on the main blockchain [2]. It aims to
enhance the throughput and efficiency of blockchain systems,
especially those utilizing smart contracts and decentralized
applications. Rollups work by aggregating transactions off-
chain, computing their outcomes, and submitting a summary
or proof of those outcomes to the main blockchain. This
significantly reduces the computational load and congestion
on the main chain while maintaining the security guarantees
through cryptographic techniques. There are two main types of
rollups: ZK-Rollups [9], which utilize zero-knowledge proofs
to validate the correctness of transaction batches, and ORs,
which rely on a challenge and dispute mechanism to ensure
the accuracy of off-chain computations.

B. Merkle Tree Root

In the context of blockchain rollup, a Merkle root plays a
crucial role in ensuring the integrity and security of off-chain
transactions or smart contracts before they are submitted to the
main blockchain [10]. The Merkle root is a cryptographic hash
that represents a summary of all the individual transactions or
data within a specific batch. By combining these transaction
hashes using a Merkle tree structure, the Merkle root con-
denses a large amount of information into a single value. This
Merkle root is then included in the transaction submitted to the
main blockchain, serving as a proof of the correctness of the
off-chain computations. In case of any dispute or challenge,
the full data can be verified on-chain by recreating the Merkle

tree and comparing it to the provided Merkle root, ensuring
the accuracy of the summarized data.

C. Workflow of Optimistic Rollup

OR addresses scalability concerns of blockchain by process-
ing transactions off-chain and ensuring their validity through
an optimistic approach, backed by a challenge mechanism.
The workflow of OR, illustrated in Figure 1, involves several
sequential steps. First, users must acquire L2 tokens (tL2) to
interact with the rollup system, which can be exchanged for
other cryptocurrencies (CL1) via the L1 smart contract. L2
transactions are then submitted to Bedrock’s Mempool [11],
where aggregators collect and process them. Users can submit
their transactions directly to the Mempool or route them
through the L1 smart contract. Aggregators process these
transactions, compute cryptographic aggregates, generate the
Merkle state root for the L2 chain, and send the results to
verifiers. Verifiers on L1 monitor these submissions, identi-
fying and disputing fraudulent or invalid transactions within
each batch. If fraud is suspected, a challenge period is initi-
ated, allowing verifiers to present fraud-proofs to contest the
optimistic assumption (Figure 2). If the fraud is confirmed,
the disputed transactions are reverted, and the malicious party
loses their security deposit. On the other hand, if no valid
challenge is made within the dispute window, the transactions
are finalized and incorporated into the blockchain [9].

Aggregator

Rollup data Dispute resolution
protocol

Re-execute
the TXs 

Valid
rollup data

Invalid
rollup data

Verifier

Slashed

Slashed Incentive

Fig. 2. Dispute Phase workflow.

D. Graph Neural Network

GNNs are a class of deep learning models designed to
process data structured as graphs [8]. Unlike traditional neural
networks that operate on Euclidean data (like images or
sequences), GNNs handle non-Euclidean structures, such as
social networks, molecular structures, or transportation grids.
By iteratively aggregating and transforming information from
a node’s neighbors, GNNs learn representations that capture
both local and global graph properties [12]. This enables them
to perform tasks such as node classification, link prediction,
and graph classification.

III. RELATED WORK

Vulnerabilities in RPC mechanisms have emerged as a
critical threat vector in blockchain, allowing attackers to
manipulate transaction processing. SlowMist [13] reported
an Ethereum-based scam where users were deceived into
modifying their RPC endpoints, leading to falsified account
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balances and unauthorized transaction approvals. Furthermore,
unprotected JSON-RPC endpoints have been identified as a
security risk in Ethereum nodes. Research by Cheng et al. [5]
demonstrated how attackers could exploit these endpoints
to initiate unauthorized Ether and ERC-20 token transfers
by sending maliciously crafted RPC requests. Given these
vulnerabilities, recent research has explored the use of GNNs
for anomaly detection in blockchain systems. Chang et al. [14]
introduced a GNN-based approach for detecting anomalous
blockchain nodes, effectively identifying fraudulent activities
through graph-based learning. Similarly, Sharma et al. [15]
proposed a self-supervised GNN model leveraging deep graph
infomax (DGI) to enhance fraud detection in decentralized
ecosystems. Unlike previously reported RPC-based attacks,
which primarily focus on direct endpoint manipulation or
unauthorized access, our proposed RPC URL manipulation
attack introduces a novel adversarial strategy where attackers
dynamically alter RPC addresses during transaction processing
delays to deceive verifiers into issuing false challenges. This
subtle yet effective manipulation creates a false perception
of fraud, leading to unnecessary disputes and penalties, ul-
timately undermining the integrity of ORs. Existing GNN-
based defenses primarily focus on static anomaly detection
or heuristic-based filtering. However, our proposed defense
mechanism, ROLLGUARD, differs by dynamically modeling
blockchain interactions and detecting suspicious RPC address
transitions in real-time. By incorporating both historical trans-
action patterns and real-time behavioral analysis, ROLLGUARD

provides a proactive defense against adaptive adversaries.

IV. RPC MANIPULATION ATTACK: KEY IDEA

This section introduces the identified RPC manipulation
attack technique, leveraging which a user can deceive the
verifier to initiate an incorrect dispute phase. This attack occurs
over a sequence of stages, each representing a distinct phase in
the timeline of the attack. Figure 3 illustrates the progression
of the attack, with each subfigure corresponding to a specific
stage. The following subsections detail each stage.

A. Transaction Submission

In the initial stage (Figure 3(a)), the OR system operates
as intended. Users interact with the system by submitting
their transactions through designated RPC endpoints. For
example, User 1 uses the endpoint http://u1 to submit
its first transaction TX1,1, while User N submits its k-th
transaction TXK,N through http://uN. The adversarial user
(i.e., attacker) uses its current endpoint http://uA to submit
its i-th TXi,A transaction.

B. Transaction Validation and Merkle Root Computation

In the second stage, the Aggregator validates the sub-
mitted transactions before aggregating them into a batch
(Figure 3(b)). It first executes the transactions and compiles
them into rolled-up batches. Subsequently, it calculates the
Merkle root of the updated L2 chain based on the newly
processed transaction data. The rolled-up transaction batch and
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Fig. 3. The consecutive phases of the RPC URL manipulation attack: (a)
transaction submission, (b) transaction validation and proof computation, (c)
attack initiation, and (d) verifier deception.

the corresponding computed state root are then submitted for
verification in the L1. At this point, the system operates as
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TABLE I
LIST OF NOTATIONS

Symbol Definition
α Probability of attack in terms of malicious user percentage
τ Risk threshold: confidence level needed for attacker classification
λ Probabilistic challenge rate
B Batch of transactions in consideration
Gt Graph formed at t-th training instance

SRPC Sender’s RPC URL address
RRPC Receiver’s RPC URL address
SURLs Count of RPC URL updates for user ‘S’
Fn Features of nodes in graph
Fe Features of edges in graph
E DNN Model embeddings

mn Message of node n

expected, with the adversarial user continuing to utilize its
original RPC endpoint (i.e., http://uA).

C. Attack Setup

In the third stage, the attacker launches the RPC ma-
nipulation attack by using an updated fraudulant RPC end-
point (http://frA). As shown in Figure 3(c), the attacker
exploits delays between the batch validation (TVal) by the
Aggregator and the batch submission (TSub) to the Verifier.
Specifically, the attacker dynamically modifies the RPC end-
point to fabricate a fraudulent Merkle root representation for
the rollup batch, which differs from the actual transaction data.
This manipulated state root creates a deceptive appearance of
fraud during the verifier’s validation process. By strategically
delaying the RPC manipulation, the attacker ensures that the
Aggregator computes the correct state root, while the Verifier
later detects an inconsistency between the computed state root
and the actual transactions due to the altered sender address
(i.e., the attacker’s modified RPC entry).

D. Verifier Deception and Attack Consequences

During this stage, the Verifiers are misled into interpreting
a legitimate state root as fraudulent (Figure 3(d)). Relying on
the altered data from the attacker’s manipulated RPC endpoint,
the Verifiers perceive a discrepancy between the submitted
state root and the actual transaction state. This false perception
prompts them to mistakenly flag the batch as fraudulent. As
a consequence, Verifiers initiate fraud challenges during the
Dispute Phase, under the assumption that the system has
been compromised. These unnecessary challenges result in
disruptive disputes, increasing overhead and reducing protocol
efficiency. Verifiers who submitted false challenges face penal-
ties (referred to as slashing), as their challenges are deemed
invalid during the dispute resolution process.

V. TECHNICAL DETAILS OF ROLLGUARD

In this section, we present the technical details of ROLL-
GUARD, the proposed GNN-based framework to defend against
the RPC URL manipulation attack. Table I presents all the
notations used in explaining the model.

A. Integration of ROLLGUARD in Optimistic Rollup System
Here, we describe how the proposed ROLLGUARD frame-

work integrates into the OR workflow to mitigate RPC ma-
nipulation attacks. During transaction processing, ROLLGUARD

continuously monitors interactions (not shown in the Fig-
ure), dynamically modeling OR transactions as a graph. This
allows the framework to detect anomalies in RPC address
changes, which are characteristic of manipulation attempts. By
analyzing both historical and real-time transaction patterns,
ROLLGUARD proactively identifies this suspicious behavior,
ensuring that genuine transactions are not disrupted while
minimizing false challenges.

As shown in Figure 4, ROLLGUARD intervenes at a critical
stage of this workflow. When verifiers have the suspicion that
a batch might have some wrong transaction, they leverage
the ROLLGUARD module before challenging the batch. Then,
if the wrong information is only related to the mismatch of
sender RPC URL and ROLLGUARD detects that the initial user
in question is identified as an ‘RPC URL manipulator user,’
then the batch is deemed valid and added to the main chain.
This suspicion management step helps to prevent unwarranted
challenges from disrupting the workflow and protects verifiers
from penalties caused by false fraud proofs. It also reduces the
occurrence of false challenges, preserving the trustworthiness
and efficiency of the protocol. In cases of actual tampering
of transactions, ROLLGUARD enables the challenging and for-
wards the batch to the dispute phase.
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Fig. 4. Proposed ROLLGUARD technique in the optimistic rollup workflow.

B. Regulating the Security-Throughput Trade-off
With ROLLGUARD, verifiers are designed to bypass challeng-

ing batches suspected to involve an RPC URL manipulator.
However, this mechanism introduces a potential downside:
in some instances, verifiers may fail to challenge rollup
batches that genuinely contain tampered data due to their
association with suspected manipulators. As a result, the
compromised data might be added to the L1 chain, under-
mining its integrity. While ROLLGUARD enhances the system’s
throughput by avoiding delays caused by unnecessary disputes,
this improvement comes at the cost of occasional lapses in
security. Consequently, the framework introduces an inherent
trade-off between maximizing throughput and ensuring robust
security. Thus, the efficiency of ROLLGUARD in mitigating
RPC manipulation attacks depends on its ability to balance
security and throughput. While ignoring certain challenges
improves system efficiency, excessive avoidance can compro-
mise integrity. To regulate this trade-off, we introduce two key
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parameters: Risk Threshold (τ ) and Challenge Rate (λ), each
of which influences the decision-making process.

1) Risk Threshold: The risk threshold (τ ) defines the con-
fidence level required for a verifier to classify an entity as an
RPC manipulator and ignore challenges against its batches.
A higher τ results in more ignored challenges, increasing
throughput; however, reducing security since legitimate fraud
may go undetected. Conversely, a lower τ enforces a stricter
challenge policy, improving fraud detection, however, at the
cost of reduced throughput due to more frequent dispute
phases. Through experiments (presented in Section VI), we
found that an optimal threshold τ∗ exists where both security
and throughput are maximized without excessive compromise.

2) Challenge Rate: Instead of a binary decision to chal-
lenge or ignore transactions, ROLL-GUARD uses a probabilis-
tic challenge rate (λ) to balance false negatives and throughput.
A higher λ (e.g., 0.9) means verifiers challenge more suspected
manipulations, improving security but reducing efficiency due
to increased dispute resolution overhead. Conversely, a lower
λ (e.g., 0.2) leads to fewer challenges, enhancing throughput
but increasing the risk of tampered batches being finalized. We
experiment in Section VI to illustrate how varying λ affects
the false negative rate and transaction throughput, highlighting
an optimal challenge rate λ∗ that achieves a balance between
security and efficiency.

C. Proposed ROLLGUARD Algorithm

The ROLLGUARD algorithm introduces a graph-based frame-
work to detect and mitigate RPC manipulation attacks in
blockchain systems. It dynamically models the interaction
between nodes (representing RPC endpoints) and transactions,
leveraging GNNs for anomaly detection. The Algorithm 1 has
been described step-by-step as follows.

1) Graph Construction and Initialization: The algorithm
begins by constructing and updating a directed graph Gt for
the current training instance t, using the batch of transactions
B. Each transaction Tx is processed to identify the sender RPC
(Tx.SRPC ) and receiver RPC (Tx.RRPC ). If these nodes do
not exist in the graph, they are added. A directed edge is
created between the sender and receiver nodes, weighted by
the number of URLs associated with the sender (|Tx.SURLs |).
This step dynamically incorporates new transactions and up-
dates the graph structure, ensuring that Gt reflects real-time
interactions.

2) Feature Extraction: After constructing the graph, node
features (Fn) and edge features (Fe) are extracted. These
features encode relevant information about the RPC nodes
and their interactions, such as transaction frequency, historical
behavior, and edge weight trends. This feature extraction
process prepares the data for input into the GNN model.

3) Graph Neural Network Initialization: A GNN model
is initialized using the updated graph Gt. This model is
tasked with learning embeddings for the nodes and edges
by aggregating and updating feature representations. These
embeddings capture both local and global patterns within the
graph, essential for identifying abnormal behavior.

Algorithm 1: Proposed ROLLGUARD Algorithm
1 Function ROLLGUARD(B,Gt,τ ,λ):
2 for Tx ∈ B do
3 if Tx.SRPC /∈ Gt then
4 Add Tx.SRPC as node to Gt;
5 end
6 if Tx.RRPC /∈ Gt then
7 Add Tx.RRPC as node to Gt;
8 end
9 Add directed edge (Tx.SRPC , Tx.RRPC ) to Gt

with weight | Tx.SURLs |;
10 end
11 Fn ← ExtractNodeFeats(Gt);
12 Fe ← ExtractNodeFeats(Gt);
13 Model← InitializeGNN (Gt);
14 E ← Model .ComputeEmbeddings(Fn, Fe);
15 for n ∈ E .nodes do
16 for i ∈ Iterations do
17 m

(i)
n ←

∑
u∈Neighb(n) Aggreg(F

(i−1)
u , F(u,n))

18 F
(i)
n ← Activation(Update(m

(i)
n ,F

(1−i)
n ))

19 end
20 end
21 for Tx ∈ B do
22 Score ← CalculateAnomaly(Tx.S, E , τ, λ);
23 if Score ⇔ RPCManipulate then
24 Challenge(B);
25 Break;
26 end
27 end
28 Gt+1 ← update graph(Gt,B);
29 return Gt+1

4) Anomaly Detection Using Node Embeddings: The GNN
computes embeddings E for all nodes and edges in the
graph through iterative message-passing operations. For each
node n, embeddings are updated iteratively based on the
aggregated features of its neighbors. The iterative process
uses an aggregation function to combine information from
neighboring nodes and an update function to refine the node’s
feature representation. An activation function ensures non-
linearity, enabling the model to capture complex patterns.
These embeddings represent the structural and transactional
characteristics of each node and its interactions.

5) Anomaly Scoring and Alerts: Each transaction in the
batch B is analyzed to calculate an anomaly score based on
the sender’s embedding, using thresholds τ and λ to determine
suspicious behavior. If a transaction is flagged as involving an
RPC manipulator, an alert is issued, and the associated batch
B is challenged. This proactive detection prevents tampered
data from being added to the blockchain.

6) Graph Update: Finally, the graph is updated to Gt+1

by incorporating new transactions from the batch B. This step
ensures the model remains adaptive to evolving interaction
patterns, enhancing its ability to detect emerging threats.

D. Data Collection for GNN Training

To train the GNN model, we collected data from pub-
licly available sources that provide comprehensive information
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Fig. 5. Impact of the RPC URL manipulation attack on the throughput of the
optimistic rollup system, in terms of the number of rollup batches processed
with different block gas limit, with (a) attack probability of 20% (α = 0.2)
and (b) attack probability of 40% (α = 0.4).

about transaction and node interactions. We specifically use
snapshots of Optimism, a state-of-the-art OR system. The
following datasets were utilized:

• Optimism Node Snapshots: The transaction and node
interaction data were extracted from the snapshots pro-
vided by Optimism’s official documentation for node
operators [16].

• Archived Optimism Snapshots: Additional data were
retrieved from an archived repository of Optimism snap-
shots hosted on the Internet Archive [17].

This data formed the basis for training the GNN model
within the ROLLGUARD module.

VI. EVALUATION

In this section, we analyze the attack impact on the net-
work throughput and the verifiers’ reward and slashing. Later,
we validated the effectiveness of the proposed ROLLGUARD

technique in defending against the attack.

A. Impact of RPC Manipulation Attack on Throughput

In this section, we analyze the system throughput under
normal and attack scenarios concerning the number of rollup
batches processed. As shown in Figure 5, the x-axis represents
the block gas limits, categorized into 200k Gas, 350k Gas,
and 500k Gas, which correspond to caps of approximately
60, 105, and 150 rollup batches, respectively. The y-axis
indicates the number of rollup batches processed. The blue
bars represent the normal throughput, showing the system’s
baseline capability under no attack scenarios, while the orange
bars indicate the attack throughput. As shown in Figure 5(a),
under normal conditions, throughput increases linearly, with
the system processing close to 50 batches at 200k gas, close
to 100 batches at 350k gas, and peaking at 153 batches at the
maximum gas limit of 500k. However, during an RPC address
manipulation attack with a probability of attack of 20%,
throughput declines sharply, with the system processing only
42 batches at 200k gas (around 14% reduction), 84 batches at
350k gas (around 15% reduction), and 131 batches at 500k
gas (around 16% reduction). This degradation underscores
the attack’s effectiveness in exploiting transaction processing
vulnerabilities and reducing system efficiency.
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Fig. 6. Effect of varying attack probabilities (α) on the verifiers’: (a) average
reward gained over the batches of a block and (b) average slashing received
over the batches of a block (in Satoshis), and comparison with the benign
case without any attack.

In contrast, when attack probability increases to 40% (Fig-
ure 5(b)), the throughput declines significantly more than
observed in the 20% case. At 200k gas, the system processes
only 34 batches, representing almost 30% reduction from
normal throughput. At 350k gas, throughput drops close to
70 batches, a 32% reduction (compared to 16% previously).
Finally, at 500k gas, the throughput falls to 110 batches, a
staggering 40 batches less processed. This severe degradation
demonstrates that the attack’s impact scales not only with gas
limit but also with adversarial intensity.

B. Effect on Verifiers’ Reward and Slashing

In this section, we analyze how varying attack probabil-
ities (α) impact the average rewards and slashings received
by verifiers across different numbers of simultaneous rollup
batches in a block, as shown in Figure 6. The graphs compare
rewards and slashings under normal conditions and attack
scenarios of increasing intensity (α = 0.2, 0.4, 0.6, 0.8).
In Figure 6(a), it is observed that under normal conditions,
rewards scale linearly with the number of batches, ranging
from 11,900 Satoshis to 13,600 Satoshis for 90 batches of the
block. However, as α increases, rewards decline significantly.
At α = 0.2 average rewards for 90 batches reduce to around
11,000 Satoshis (a 9% decrease), while at α = 0.4, they
drop further to 8,500 Satoshis (33% reduction). At higher
attack probabilities, the reductions are more pronounced, with
average rewards at α = 0.6 and α = 0.8 falling to 6,000
Satoshis (50% reduction) and 2,200 Satoshis (80% reduction),
respectively. This trend highlights the vulnerability of verifiers’
incentives under intensified adversarial conditions.

Moreover, we analyze the impact of varying attack prob-
abilities on the average slashes incurred by verifiers across
different numbers of simultaneous rollup batches in a block.
As shown in Figure 6(b), under normal conditions, slashes
remain consistently low, peaking at around 1,000 Satoshis for
80 batches. However, as α increases, slashes rise significantly.
At α = 0.2, slashes peak at 2,000 Satoshis for 80 batches,
doubling the normal values. As attack intensity grows, slashes
further escalate, reaching 3,000 Satoshis at α = 0.4, 4,500
Satoshis at α = 0.6, and a severe 6,000 Satoshis at α = 0.8,
representing a sixfold increase compared to normal conditions.
This trend underscores the compounding penalties verifiers
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Fig. 7. Analyzing the training and inference performance of GNN models:
(a) training loss curves of GCN, GAT, and GraphSAGE over 40 epochs and
(b) ROC curves of GCN, GAT, and GraphSAGE, comparing their anomaly
detection performance.

face under heightened attack probabilities, amplifying the risk
to their participation and the overall protocol integrity.

C. The Training and Inference of GNN Models

In this section, we evaluate the training and inference
performance of ROLLGUARD using three different GNN archi-
tectures [18]: Graph Convolutional Network (GCN), Graph
Attention Network (GAT), and GraphSAGE (Figure 7). As
presented in Figure 7(a), the loss values of these models are
compared over 50 training epochs to assess their convergence
behavior and effectiveness in detecting anomalous RPC ad-
dress manipulations. Initially, all models exhibit a high loss
value of approximately 1.0×109, which decreases as training
progresses. By epoch 10, GCN and GAT reduce their loss to
around 2.5 × 108, while GraphSAGE lags at approximately
4.0×108. By epoch 25, GCN stabilizes at a loss of 6.3×107,
which is lower than GAT’s 8.1× 107 and significantly better
than GraphSAGE’s 1.2×108. These results indicate that GCN
achieves faster and more stable convergence.

Later, we analyze the receiver operating characteristic
(ROC) curves of ROLLGUARD using GCN, GAT, and Graph-
SAGE. As shown in Figure 7(b), the ROC curve illustrates
the trade-off between the true positive rate (TPR) and the
false positive rate (FPR) for each model. The area under the
curve (AUC) is used as a key metric to evaluate classifica-
tion performance. We observe that GraphSAGE achieves the
highest AUC of 0.92, indicating superior detection capability
for anomalous RPC address manipulations. GCN follows with
an AUC of 0.85, demonstrating competitive performance but
slightly lower sensitivity to attacks. In contrast, GAT per-
forms significantly worse, with an AUC of only 0.56, barely
outperforming a random classifier. These results suggest that
GraphSAGE is the most effective model for detecting RPC-
based attacks, providing the best balance between detection
accuracy and false positive rate.

D. Validation of ROLLGUARD’s Effectiveness

In this section, we analyze the impact of ROLLGUARD

on verifiers’ rewards and slashings under different attack
probabilities (Figure 8). As shown in Figure 8(a), the average
rewards (measured in Satoshis) are plotted against the number
of simultaneous batches in a block, considering different
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Fig. 8. Analyzing the impact of the ROLLGUARD framework in improving
verifiers’: (a) average reward gained over the batches of a block and (b)
average slashing received over the batches of a block (in Satoshis), with
varying attack probabilities.

attack probabilities ( α = 0.2, 0.4, 0.6, 0.8). We observe that
under normal conditions (i.e., no attack), verifiers receive the
highest average rewards, exceeding 12,000 Satoshis having
80 simultaneous batches in the block. However, as the attack
probability increases, the rewards decline due to the higher
frequency of fraudulent challenges and incorrect verifications.
For α = 0.2, the rewards remain relatively stable, averaging
around 11,800 Satoshis. When the attack probability rises to
α = 0.6, the rewards drop slightly below 10,000 Satoshis,
indicating a negative impact on verifiers’ earnings. At the
highest attack probability ( α = 0.8), the rewards deteriorate
further, approaching 8,000 Satoshis at higher batch numbers.
These results demonstrate that even under high attack probabil-
ities, the rewards with ROLLGUARD remain significantly higher
than the scenarios without defense, where the rewards drop
drastically to around 2,000 Satoshis. By proactively identify-
ing fraudulent challenges, ROLLGUARD helps sustain payoffs,
maintaining system robustness in ensuring fair compensation
for verifiers.

In Figure 8(b), the average slashes (measured in Satoshis)
are plotted against the number of simultaneous batches in a
block, considering similar attack probabilities as before. We
observe that under normal conditions, verifiers incur minimal
slashes, staying well below 1,000 Satoshis across all batch
sizes. As the attack probability increases, slashes rise due to
an increase in fraudulent challenges and incorrect verifications.
For α = 0.2, slashes remain relatively low, averaging around
1,500 Satoshis. However, as the attack probability increases
to α = 0.6, the slashes reach approximately 2,700 Satoshis,
indicating a substantial penalty for verifiers. At the highest
attack probability ( α = 0.8), slashes exceed 3,000 Satoshis,
reflecting the significant challenges verifiers face in hostile
environments. Notably, even under the most adversarial con-
ditions, ROLLGUARD effectively reduces slashes compared to
cases without defense, where slashes escalate beyond 6,000
Satoshis. By proactively detecting anomalous RPC manip-
ulations, ROLLGUARD prevents unnecessary slashes, thereby
enhancing the stability and security of the OR systems.

E. Trade-off w.r.t. Risk Threshold and Challenge Rate

In this section, we analyze the impact of the risk threshold
(τ ) and challenge rate (λ) on the trade-off between security
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Fig. 9. Analysis of the security vs. throughput trade-off for the proposed
ROLLGUARD frmaework, governed by: (a) risk threshold (τ ) and (b)
challenge rate (λ).

and throughput in ROLLGUARD, as shown in Figure 9. First,
we experiment with the τ parameter, which is presented in
Figure 9(a). The x-axis represents the risk threshold, while
the left y-axis represents security, measured as the fraud
detection rate percentage, and the right y-axis represents
throughput, measured in transactions per second (TPS). As
τ increases, security declines while throughput improves. At
low values (e.g., τ = 0.1), verifiers are more conservative,
issuing challenges frequently, leading to high security (fraud
detection near 90%) but at the cost of lower throughput due
to increased dispute resolution overhead. Conversely, at high
values of τ (e.g., τ = 0.9), ROLLGUARD aggressively avoids
challenging against suspected RPC manipulators, allowing
transactions to proceed without wrong challenge phases in-
curred delays, thereby maximizing throughput. However, this
also increases the likelihood of fraudulent batches bypassing
detection (avoiding actual tampered batches), reducing secu-
rity. The trade-off curve suggests that an optimal risk threshold
(τ∗≈0.18) exists, balancing security and throughput. Setting
τ too low results in unnecessary disputes, limiting system
efficiency, whereas setting it too high risks allowing tampered
data onto the L1 blockchain, compromising integrity.

Further, we analyze the impact of the challenge rate (λ) on
the trade-off between security and throughput. As shown in
Figure 9(b), the x-axis represents the challenge rate, while the
left y-axis represents security, measured as the false negative
rate, and the right y-axis represents throughput, measured
in TPS. As λ increases, security improves while throughput
declines. At low values (e.g., λ = 0.1), the system is
more lenient, issuing fewer challenges. This results in higher
throughput, as transactions proceed with minimal interference,
but comes at the cost of reduced security, with an elevated
False Negative Rate. Conversely, at high values of λ (e.g.,
λ = 0.9), the system adopts stricter security measures, issuing
challenges frequently. The trade-off curve implies that an
optimal challenge rate (λ∗≈0.42) exists, balancing security
and throughput. Setting λ too low prioritizes efficiency but
risks letting security threats bypass detection. Conversely,
setting it too high enhances security at the expense of system
efficiency in terms of throuput.

VII. CONCLUSION

In this work, we identified a critical security vulnerability
in the OR systems stemming from RPC address manipulation.

This exploit allows attackers to deceive verifiers, triggering
false fraud challenges and undermining the integrity of the
blockchain protocol. To address this issue, we proposed ROLL-
GUARD, a novel graph ML-driven security solution leveraging
GNNs to dynamically analyze blockchain interactions and
detect anomalous RPC address changes in real-time. Our ex-
perimental results demonstrate that ROLLGUARD significantly
reduces false-positive challenge rates, offering early detection
of potential attacks and safeguarding verifiers from undue
penalties. By modeling blockchain interactions as a graph and
analyzing both real-time and historical transaction patterns,
ROLLGUARD provides a proactive and efficient defense mech-
anism against RPC-based attacks.
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