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Abstract—Hardware fuzzing has emerged as a powerful tech-
nique for detecting security vulnerabilities and functional bugs
in modern hardware systems. Unlike traditional verification
approaches that rely on predefined testbenches and formal proofs,
hardware fuzzing generates and mutates inputs dynamically to
uncover unexpected behaviors. Despite its effectiveness, hardware
fuzzing faces challenges such as test case explosion, coverage
limitations, and debugging complexity. Recent advancements in
Machine Learning (ML) and Large Language Models (LLMs) of-
fer new opportunities to enhance hardware fuzzing by improving
test case generation, optimizing coverage feedback, and automat-
ing debugging processes. This paper provides a comprehensive
survey of the current state of hardware fuzzing, highlighting
its methodologies, applications, and limitations. Furthermore, we
explore the potential of ML and LLMs in augmenting fuzzing
workflows and discuss key challenges that must be addressed for
broader adoption. By synthesizing insights from existing research
and industry practices, we outline future research directions that
can bridge the gap between automated hardware fuzzing and
intelligent, adaptive testing frameworks.

I. INTRODUCTION

Modern hardware designs are becoming increasingly com-
plex, making it challenging to ensure their correctness, re-
liability, and security. As integrated circuits (ICs) grow in
scale and sophistication, traditional verification techniques
face significant limitations in scalability, automation, and
vulnerability detection. Hardware verification has traditionally
relied on techniques such as simulation-based verification
(e.g., Universal Verification Methodology, or UVM), formal
verification, and emulation. While these methods have been
effective in catching design flaws, they require extensive
manual effort, domain expertise, and, in many cases, suffer
from test coverage gaps. To address these challenges, hardware

fuzzing has emerged as a promising alternative. Inspired by
software fuzzing, this technique applies dynamic, automated
test generation strategies to hardware designs, helping un-
cover security vulnerabilities and functional inconsistencies
that conventional methods may miss. Hardware fuzzing does
not rely on predefined testbenches or constrained verification
models; instead, it generates and mutates inputs to explore
different execution states of the design-under-test (DUT). This
approach is particularly useful in identifying corner-case bugs,
security exploits, and robustness issues in modern processors,
accelerators, and system-on-chip (SoC) architectures. Despite
its advantages, hardware fuzzing is still in its early stages
and has not yet seen widespread adoption in industry. Some
of the primary challenges include computational overhead,
difficulty in debugging failures, and a lack of standardization
in hardware fuzzing frameworks. Furthermore, unlike formal
verification, which can provide correctness guarantees, fuzzing
does not inherently ensure exhaustive verification coverage.
Recent advancements in Machine Learning (ML) and Large
Language Models (LLMs) present exciting opportunities to
enhance hardware fuzzing. ML-based techniques can optimize
test case generation, improve feedback-driven coverage ex-
ploration, and assist in vulnerability detection. Meanwhile,
LLMs have the potential to automate testbench creation,
script generation, and even debugging analysis, significantly
reducing human effort in verification processes. Integrating
AI-driven methodologies into hardware fuzzing could make it
a more efficient and intelligent approach to hardware security
and functional validation.

This paper provides a comprehensive survey of the current
state of hardware fuzzing, highlighting its methodologies,
advantages, and limitations. Additionally, we explore how ML
and LLMs can be leveraged to enhance hardware fuzzing and



discuss the key challenges that must be addressed for broader
adoption in both academic and industrial settings. Finally,
we outline open research directions that could drive the
development of AI-enhanced hardware fuzzing frameworks,
making them a viable addition to modern hardware verification
workflows.

II. CURRENT STATE OF HARDWARE FUZZING

A. The Need for Hardware Fuzzing in Security Validation

Modern hardware systems, particularly system-on-chips
(SoCs) and processor architectures, have become increasingly
complex, integrating multiple intellectual property (IP) blocks
from diverse vendors. This growing complexity introduces
security vulnerabilities that are difficult to detect using tradi-
tional verification techniques, such as constrained random ver-
ification (CRV) and formal verification (FV). Unlike software,
where patches can be applied after deployment, hardware
vulnerabilities cannot be easily fixed post-fabrication, making
pre-silicon security validation critical.

Formal verification techniques, such as theorem proving and
model checking, offer exhaustive validation but face scalability
challenges due to state explosion and the requirement of man-
ual assertion writing. Similarly, CRV generates randomized
test cases but lacks the guided intelligence needed to reach
deep hardware states where security vulnerabilities might
reside. To address these limitations, hardware fuzzing has
emerged as an effective alternative, leveraging automated input
generation and mutation strategies to systematically explore
hardware state spaces and identify potential vulnerabilities.

B. Evolution of Hardware Fuzzing Techniques

1) Fuzzing Hardware Like Software: One of the earliest ap-
proaches to hardware fuzzing was introduced by Trippel et al.
[1], where the idea of translating register-transfer level (RTL)
designs into software models enabled the use of software
fuzzing methodologies like American Fuzzy Lop (AFL). This
method involved translating RTL into software-executable
C++ models using Verilator, applying dynamic mutation of
test inputs within a software-based fuzzing framework, and
tracking HDL line coverage and finite state machine (FSM)
transitions to refine test cases. This technique was two orders
of magnitude faster than constrained random verification,
achieving 83 percent HDL line coverage in OpenTitan cores.
However, its reliance on golden reference models for correct-
ness checking made it impractical for large-scale hardware
designs. Furthermore, the equivalence between software ex-
ecution traces and actual hardware behavior was sometimes
questionable.

2) Coverage-Guided Hardware Fuzzing: RFUZZ [2], in-
troduced at ICCAD 2018, was one of the earliest at-
tempts at coverage-directed test generation (CDG) for hard-
ware fuzzing. Unlike software-based fuzzing, RFUZZ utilized
FPGA-accelerated simulation to improve execution speed.
Its core innovations included mux toggle coverage, which
tracked multiplexer control signal toggles to measure circuit

exploration, meta-reset transformation to reset registers effi-
ciently, and sparse memory tracking to reduce overhead in
large designs. RFUZZ demonstrated significant improvements
over random testing, particularly for feedback-driven circuits.
However, it struggled with scalability as fitting large designs
on an FPGA was a challenge. Additionally, the fuzzing speed
was bottlenecked by the software analysis overhead of test
input mutation and coverage tracking.

3) Differential Fuzzing and Coverage-Guided CPU Veri-
fication: DIFUZZRTL [3], introduced at IEEE Symposium
on Security and Privacy in 2021, improved upon RFUZZ
by introducing register-coverage guided fuzzing, which fo-
cused on control register transitions rather than multiplexer
toggles. This technique was particularly effective in processor
architectures, enabling more precise finite state machine state
exploration. DIFUZZRTL provided a 40 times increase in
execution speed compared to RFUZZ and was 6.4 times more
efficient in exploring state spaces, leading to faster vulnera-
bility detection. This approach employed a differential testing
methodology, comparing RTL execution traces with a golden
model to identify inconsistencies. DIFUZZRTL successfully
fuzzed complex out-of-order processors such as the RISC-
V BOOM core, which RFUZZ failed to scale to. However,
DIFUZZRTL required an instruction set architecture (ISA)
simulator, limiting its ability to detect non-ISA vulnerabilities.

4) Instruction-Level and Security-Driven Hardware
Fuzzing: TheHuzz [4], introduced at the USENIX Security
Symposium in 2022, focused on processor instruction
fuzzing using golden-reference models to detect deviations
from expected CPU behavior. TheHuzz incorporated
comprehensive coverage metrics, including statement,
branch, toggle, expression, condition, and FSM coverage.
TheHuzz outperformed Cadence JasperGold by mitigating
state explosion and reducing the manual effort required
for formal verification. However, its runtime overhead was
significantly higher than that of DIFUZZRTL, reaching 71
percent compared to DIFUZZRTL’s 6.9 percent, making it
less practical for large-scale designs requiring rapid iteration.

5) Security-Oriented System-on-Chip Fuzzing: SoCFuzzer
[5], introduced at DATE 2023, shifted away from gen-
eral coverage metrics and introduced cost function-driven
fuzzing for security-specific validation. Instead of maximiz-
ing code coverage, SoCFuzzer employed cost functions to
guide fuzzing toward security-critical areas. The framework
incorporated FPGA-based real-time security monitoring and
gray-box fuzzing techniques, allowing verification without
requiring a golden model. SoCFuzzer successfully detected
security vulnerabilities in RISC-V-based SoCs, including AES
key leakage and privilege escalation attacks. However, the
cost function required for guiding fuzzing had to be carefully
designed, necessitating significant expert knowledge, which
limited automation.

6) Machine Learning-Based and Hybrid Hardware
Fuzzing: ChatFuzz [6], introduced in 2024, integrated
machine learning-based input generation, leveraging large
language models and reinforcement learning to generate
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TABLE II: Evaluation Metrics for Hardware Fuzzing Frameworks

Metric Description
Total Bugs Found Measures the number of unique hardware vulnerabilities identified during fuzzing. A higher number of

detected bugs indicates a more effective framework.
Time-to-First Bug (TTFB) Quantifies the time required for the fuzzer to detect the first security vulnerability in the design, reflecting

its initial efficiency.
Cumulative Bug Detection Tracks the rate at which new vulnerabilities are discovered over time, providing insight into long-term

effectiveness.
Toggle Coverage Ensures that all logic gates and signals within the design toggle between 0 and 1 during testing, validating

full circuit activation.
Functional Coverage Assesses whether the fuzzer exercises all FSM transitions, module interactions, and expected behaviors

to confirm operational correctness.
Code Coverage Measures how much of the RTL code is executed, including statement, branch, and path coverage. Ensures

deeper analysis of the design.
Line Coverage Verifies whether each line of RTL code has been executed at least once, ensuring full design exploration.
Verdi Coverage Determines the activation of predefined cover groups and assertions, ensuring verification of security

constraints and edge behaviors.
Execution Speed Evaluates how quickly the fuzzer generates, executes, and analyzes test inputs, determining overall fuzzing

efficiency.
Resource Utilization Tracks CPU, memory, and FPGA usage during fuzzing, ensuring that computational overhead remains

manageable.
Scalability Assesses the framework’s ability to handle large and complex SoC designs while maintaining efficiency.
Verification Plan Ensures rigorous validation through design constraints, corner case testing, and integration with formal

verification techniques.

effective test cases. It achieved 75 percent condition
coverage on RocketCore in 52 minutes, significantly
outperforming previous approaches. The methodology behind
ChatFuzz employed a three-step training process, beginning
with unsupervised learning to model machine instruction
sequences, followed by reinforcement learning with an ISA
disassembler to refine instruction validity, and concluding
with coverage-driven reinforcement learning using RTL
simulation feedback. ChatFuzz also utilized a differential
testing approach, comparing ISA model outputs with RTL
simulations to detect mismatches. Although ChatFuzz
significantly improved fuzzing efficiency, it was heavily
dependent on large-scale machine learning training datasets
and required manual bug validation, necessitating further
advancements in AI-based filtering techniques to improve
automation.

7) Hybrid and Formal Verification-Assisted Fuzzing: HyP-
Fuzz [7] introduced a hybrid approach by integrating formal
verification with fuzzing to expand design space coverage. It
employed a dynamic scheduling strategy to alternate between
formal verification techniques and mutation-based fuzzing,
achieving an eleven-fold improvement in fuzzing speed over
TheHuzz and reducing vulnerability detection time by a factor
of 3.06. Although HyPFuzz successfully uncovered previously
undetected security vulnerabilities, its overall effectiveness
was constrained by the complexity of integrating formal verifi-
cation with fuzzing techniques. Additionally, the expansion in
design space coverage achieved by this method was limited to
approximately 1 percent, highlighting the challenges of balanc-
ing formal verification with practical fuzzing methodologies.

Hardware fuzzing has evolved from software-based ap-
proaches to coverage-guided, differential, security-driven, and
machine learning-enhanced methodologies. Each method has
contributed to improving hardware security validation by ad-

dressing different aspects of the verification process. While
machine learning and hybrid methods have shown promising
results, challenges remain in scalability, automation, and gen-
eralizability across diverse hardware architectures. Continued
advancements in AI-driven fuzzing, security-aware coverage
metrics, and efficient system-on-chip-scale fuzzing will shape
the next generation of hardware security validation tools.

III. METRICS FOR EVALUATING HARDWARE FUZZING
FRAMEWORKS

To effectively assess the performance and efficiency of
hardware fuzzing frameworks, we define a set of quantitative
metrics that measure bug identification, coverage, execution
efficiency, and verification accuracy. These metrics provide an
objective basis for comparing different fuzzing methodologies
and ensuring comprehensive hardware security validation. Bug
identification plays a critical role in evaluating a fuzzing
framework. The total number of unique bugs detected is a
primary measure of effectiveness. Additionally, time-to-first-
bug (TTFB) is an important metric, quantifying how quickly
a fuzzer detects its first vulnerability in the design. The
cumulative bug detection rate provides further insight into
how efficiently new vulnerabilities are discovered over time.
A fuzzing framework that maintains a high and consistent bug
detection rate is preferable, as it ensures continuous discovery
of security flaws.

Coverage metrics assess how thoroughly the fuzzer explores
different aspects of the hardware design. Toggle coverage
measures whether all logic gates and signals transition between
0 and 1, ensuring that every element of the circuit is acti-
vated during testing. Functional coverage evaluates whether all
expected finite-state machine (FSM) transitions and module
interactions are exercised, confirming that the fuzzer effec-
tively tests the intended operational states of the hardware.



TABLE III: ML techniques applied in hardware security.

ML Method Use Case Strengths Challenges
Supervised Learning Bug Classification High Accuracy Requires Labeled Training Data
Reinforcement Learning Adaptive Test Input Generation Maximizes Coverage High Training Cost
Graph Neural Networks (GNNs) RTL Structure Analysis Captures Hardware Dependencies Computationally Expensive

Code coverage provides a more detailed breakdown of RTL
execution, incorporating statement coverage, which measures
the percentage of executed statements, branch coverage, which
determines whether both true and false conditions of branching
statements have been tested, and path coverage, which ensures
different execution paths within the design are explored.
Additionally, line coverage verifies whether each individual
line of RTL code has been executed at least once. Beyond
these, Verdi coverage provides a specialized measure of the
fuzzer’s effectiveness in activating cover groups and assertions
embedded in the design. This ensures that the framework exer-
cises predefined security and correctness properties, allowing
for validation of edge behaviors and potential corner cases.
Performance metrics determine the computational efficiency
and scalability of the fuzzing framework. Execution speed
measures how quickly the fuzzer generates, executes, and
evaluates test inputs, which is crucial for large-scale designs.
Resource utilization tracks the consumption of CPU, memory,
and FPGA resources, ensuring that the framework does not im-
pose excessive computational overhead. Scalability measures
how well the fuzzer adapts to increasingly complex system-
on-chip (SoC) designs, determining whether it can maintain
efficiency across large and deeply integrated architectures.
Verification planning is essential for ensuring that the hardware
fuzzing process is rigorous and systematic. A well-defined
verification plan should include design constraint validation,
which ensures that RTL constraints are met under all test con-
ditions. Comprehensive corner case testing evaluates whether
the fuzzer effectively triggers rare execution scenarios that
could lead to functional failures. Formal verification integra-
tion complements fuzzing by providing exhaustive correctness
checks, enabling a higher degree of design security assurance.

IV. LLMS AND FINE-TUNING

Pre-trained models like Llama3, Mistral or GPT-4 are
trained on large corpora of text for them to learn general
linguistics and knowledge. However they lack the knowledge
for specialized tasks like Hardware Fuzzing, where domain-
specific knowledge, such as knowledge of hardware descrip-
tion languages and known circuit vulnerabilities are essential.
Fine tuning is a method for domain specific adaptations.
Fine tuning a pretrained model from scratch is a resource
intensive task. For example GPT-4 is a model with 175 Billion
parameters and fine tuning a model this big is an intensive
task. The time required for training such a big model is one
problem but the amount of space required is also a problem.

A. LoRA [8]

LoRA is a method that achieves the work of fine-tuning
with minimal computational resources while proving just as

effective as full fine tuning for most cases.
The main idea behind Low Rank Adaptation(LoRA) is that

we fine tune a model by only adapting a small number of
parameters while keeping the rest of them frozen/unchanged.
According to Hu et. Al. (LoRA paper reference) the idea
behind LoRA is based on a simple observation that model
weight matrices in LLMs can be decomposed into lower rank
matrices.

The following equation represents the main idea behind
LoRA:

W = W0 +∆W = W0 +BA

W0is the original weight matrix of the model,
∆W is the learned adaptations for the specific task,
W is the final weight matrix,
B is a matrix of dimension d× r, and
A is a matrix of dimension r × k

For instance consider that you have a weight matrix with
dimensions 800 × 500, this gives you a total of 400, 000
parameters to train which would take approximately. Let’s
say that it has an intrinsic rank of 6, that means we can
decompose it into two matrices: A−800×6 and B−500×6.
So now instead of needing to fine-tune 400, 000 parameters
you only need to fine-tune 7, 600 parameters.

Advantages:
• LoRA significantly reduces the number of parameters to

be adapted during the process of fine tuning. Instead of
adapting all of the model’s parameters we only need
to adapt a few making the process memory efficient.
This means we can fine tune large language models on
consumer grade hardware with limited memory

• The base model’s original parameters remain frozen,
preserving the original knowledge of the model

• Since LoRA only creates adapters for the parameters
keeping the original parameters of the model unchanged
we can swap LoRA adapters for different tasks without
needing to retrain the model

Disadvantages:
• While LoRA may perform well in most cases, it may

not capture very complex adaptations as effectively as
full fine-tuning for tasks requiring significant adaptations
over the base model. For example, consider a model de-
veloped to detect side channel attacks in microprocessor
architectures. LoRA’s linear adaptation might struggle to
capture the signatures of side-channel attacks, potentially
missing critical, subtle security indicators in micropro-
cessor designs.



TABLE IV: Potential applications of LLMs in hardware fuzzing.

Application Benefit Limitation
Testbench Generation Automates Test Creation Needs Extensive Training Data
Debugging Automation Faster Root Cause Analysis Interpretability of AI Decisions
Constraint Optimization Enhances Coverage-Driven Fuzzing Requires Fine-Tuning for Hardware Constraints

• LoRA best works for models with transformer like ar-
chitecture, however it may not be the best approach
for all architectures. For example in physics or climate
models which are characterized by nonlinear equations
differential equations to using LoRA might introduce
numerical instability leading to a discrepancy in the
predicted and actual output of the model.

• There is a risk of the model overfitting especially if the
dataset is limited. Consider a model adapted to identify
side channel attacks for microcontrollers but the dataset
used to train the LoRA adapter only had the side-
channel traces of a specific model of microcontroller,
it might learn the noise patterns unique to that specific
device failing to identify legitimate attacks as it fails to
generalize the knowledge from the dataset.

V. THE ROLE OF MACHINE LEARNING IN HARDWARE
FUZZING

Machine Learning (ML) has significantly impacted various
domains, and hardware fuzzing is no exception. Traditional
fuzzing techniques rely on heuristics and randomization to
generate test cases. However, ML-based fuzzing introduces a
data-driven approach that optimizes test input generation, cov-
erage feedback, and vulnerability detection, resulting in a more
efficient and intelligent fuzzing process. Several hardware
fuzzers, such as ChatFuzz [6] and HyPFuzz [7], have already
started incorporating ML-based methodologies to improve
input generation, coverage maximization, and bug discovery.

A. ML Techniques for Hardware Fuzzing

Several ML methodologies have been explored in hardware
fuzzing, each offering unique advantages in optimizing test
input selection, improving execution efficiency, and enhanc-
ing the discovery of vulnerabilities. Supervised learning is
frequently used to classify detected hardware vulnerabilities
and anomalies. By training models on previously identified
hardware bugs, supervised classifiers can predict and catego-
rize new vulnerabilities, reducing the manual effort required
for bug triaging. ChatFuzz, for example, uses an ML-based
classification mechanism to distinguish between functional
mismatches and security-critical deviations in CPU execution.

Reinforcement learning (RL) has shown promise in adap-
tive fuzzing strategies, particularly in generating optimal test
inputs. RL-based fuzzers iteratively refine their inputs based
on feedback, leading to an exploration-exploitation balance.
ChatFuzz implements coverage-driven reinforcement learning,
where an ISA disassembler and RTL simulator act as the
reward agent, ensuring maximal state-space exploration within
processor architectures.

Graph Neural Networks (GNNs) provide a structured way
to model RTL circuit connectivity and dependencies. Unlike
conventional ML models, GNNs represent netlists as a graph,
allowing for more context-aware fuzzing decisions. GNNs
have been explored in RTL structure analysis, identifying hard-
to-reach states in finite state machines (FSMs), which are
critical for security validation.

VI. THE POTENTIAL OF LARGE LANGUAGE MODELS IN
HARDWARE FUZZING

Large Language Models (LLMs), such as GPT-based mod-
els, have demonstrated remarkable capabilities in automating
code analysis, test generation, and debugging. In hardware
fuzzing, LLMs can augment traditional methods by automat-
ing testbench creation, improving debugging assistance, and
optimizing fuzzing constraints.

A. LLM Applications in Hardware Fuzzing

Testbench generation is a time-consuming process in hard-
ware verification. LLMs have the potential to automate test
script creation by analyzing RTL descriptions and synthesiz-
ing corresponding testbenches. This application has already
been explored in ChatFuzz, where LLM-generated instruction
sequences enhance test diversity, leading to higher coverage
in processor architectures. Debugging assistance is another
area where LLMs can provide value. Hardware fuzzing of-
ten generates a large volume of failing test cases, making
manual root cause analysis impractical. LLMs can interpret
error messages, extract relevant debugging traces, and suggest
potential failure sources, accelerating the debugging workflow.
Constraint optimization plays a crucial role in symbolic and
concolic execution, where test inputs must satisfy specific
constraints to reach targeted design states. LLMs can learn
from prior fuzzing campaigns and refine constraint models,
reducing false positives and enhancing constraint satisfaction-
based fuzzing efficiency.

VII. CHALLENGES AND OPEN RESEARCH DIRECTIONS

Despite its advantages, AI-driven hardware fuzzing faces
multiple challenges. One significant limitation is the high
computational cost of training complex ML and LLM models.
Reinforcement learning-based fuzzers, for example, require
thousands of RTL simulations to learn effective fuzzing strate-
gies, making them prohibitively expensive for large-scale SoC
designs. Another major challenge is lack of explainability.
Unlike traditional verification techniques, AI-based fuzzers
do not always provide a clear rationale for why certain test



inputs trigger vulnerabilities. Debugging failures and inter-
preting ML-generated test cases remain open research prob-
lems. Limited training data is another bottleneck. Hardware
fuzzing lacks large, labeled datasets that could be used to
train supervised learning models. Unlike software vulnerability
detection, where public datasets of security exploits exist,
hardware fuzzing datasets remain proprietary and fragmented.

A. Future Research Directions

Future research should focus on hybrid verification ap-
proaches, where AI-based fuzzing is combined with formal
verification techniques to enhance vulnerability detection ac-
curacy. Hybrid approaches, such as HyPFuzz, have already
demonstrated improvements in state-space coverage by inte-
grating formal verification heuristics with fuzzing strategies.
Developing efficient AI models tailored for hardware fuzzing
is another promising direction. Current LLMs and RL-based
models are resource-intensive, requiring significant hardware
infrastructure. Exploring lightweight ML models that optimize
test input selection without excessive computation overhead is
necessary for practical adoption. The use of LLM-powered
debugging assistants is an emerging field, where AI models
provide real-time feedback during fuzzing campaigns. By
integrating LLM-based reasoning with verification logs, future
tools could automatically suggest counterexamples, propose
patches, and refine fuzzing strategies.

VIII. CONCLUSION

This paper surveyed the evolution of hardware fuzzing tech-
niques, highlighting how machine learning and large language
models are transforming the landscape of security validation
in hardware design. AI-driven fuzzing techniques, including
reinforcement learning-based adaptive test generation, graph-
based RTL modeling, and supervised bug classification, offer
significant advantages over traditional methods by improving
coverage, automating test generation, and enhancing bug de-
tection efficiency. However, challenges remain, including the
high computational overhead of ML training, the difficulty of
explaining AI-generated test cases, and the lack of structured
hardware fuzzing datasets. Future research should explore
hybrid verification strategies, efficient AI models, and LLM-
assisted debugging tools to bridge the gap between automation
and interoperability. As hardware security threats continue to
evolve, AI-based fuzzing frameworks will play an essential
role in identifying vulnerabilities early in the design cycle,
ensuring robust and secure hardware architectures for future
computing systems.
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