
Energy-efficient Persistently Secure
Block-based Differential Checkpointing for

Energy Harvesting Devices

Abstract—Energy harvesting devices (EHDs) are becom-
ing inevitable because of their ultra-low-power, highly
portable, self-sustainable nature. But it is challenging to
use these devices as they rely on sporadic and variable
sources of ambient energy and are equipped with very small
memories. NVM memories such as FRAM used in EHDs
suffer from a security vulnerability where the data remains
even after the system is powered down. An attacker with
physical access to the system can extract sensitive informa-
tion from the memory; our goal is to find an efficient way to
protect the memory from such vulnerabilities. We propose
a secure mechanism that includes encryption for protection
against attacks such as snooping, splicing, and replay.
Moreover, due to the intermittent energy, there is repeated
loss of device state that can cause nontermination of the
programs executing on these devices. We use block-based
differential checkpointing as the state retention technique
that achieves termination and guarantees the program’s
forward progress. Also, our work includes an efficient way
of calculating and comparing energy to start the encryption
and checkpointing process. We show a 27.81x improvement
in the progress of the program, and more than 99%
reduction in latency and energy overhead compared to the
baseline method.

Index Terms—Non-volatile Memory; Energy Harvesting
Devices; Security; Differential Checkpointing; Checkpoint
vulnerabilities; Cryptographic algorithm;

I. INTRODUCTION

Battery-powered IoT devices are less portable and
have limited lifetimes; also, the batteries need to be
replaced often as and when they deplete. Furthermore,
disposal of as many batteries is toxic to the environ-
ment as they contain nickel, lead, and mercury [12].
Thus, to reduce environmental pollution, the use of self-
sustainable capacitor-based EHDs was introduced, for
which the market is already over 500 million USD
and is projected to double by 2030, due to its ease of
deployment in remote and hazardous locations, where
the battery-powered devices cannot be used. The mem-
ory used in such devices is ferroelectric random-access
memories (FRAM); compared to dynamic and static
random-access memories (DRAM and SRAM), FRAM
has the advantage of being non-volatile, as it does not

require a power supply to maintain stored data [3]. They
also offer faster write and read times, higher endurance,
and lower energy consumption compared to conven-
tional non-volatile flash and electronically erasable pro-
grammable read-only memories (EEPROM).

The goal of this study is to find a solution to the
security vulnerability of lingering data in a FRAM that
must satisfy at least three requirements. One requirement
is that data should be retained in memory in an encrypted
form (unintelligible) so that the attackers cannot retrieve
any sensitive information and the data can be recovered
for normal system operation when the processor boots or
wakes up from hibernation. A second requirement is that
the encryption ability must not depend on a particular
processor platform or require specific changes to the
processor architecture. The final requirement is that the
solution should not incur substantial performance or
energy overheads for applications running on the system.

Unlike traditional IoT devices, EHDs extract energy
from ambient sources like solar, RF signals, vibrations,
and wind and are unpredictable [5]; therefore, an energy
storage unit like a supercapacitor is used in EHDs,
but still, the device may fail due to energy depletion
caused by the insufficient power supply. In order for
the system to function correctly despite a power fail-
ure, a checkpoint (backup) of the current program’s
state is done in the non-volatile memory (NVM). The
checkpoint is restored, and execution is continued when
sufficient energy is harvested by the system. This is
called intermittent computing in EHDs [17].

Our major contributions to this proposal are:

• Our approach uses an AES-CBC hardware module
to encrypt/decrypt and HMAC the checkpoints, in
order to be independent of the processor platform.

• We use differential checkpointing, by tracking the
changed memory blocks to reduce the overhead of
encryption and as such the intermittent computing.

• Decisions about when to encrypt and checkpoint
are made at run time and are assisted by the energy

monitor program.
• A predetermined location in the NVM is used for

the encrypted checkpoint as we are sure about
completing the checkpoint process using the energy
monitor program. This will ease the run-time devel-
opment and reduce the NVM requirement.

• By using direct memory access (DMA) to access
FRAM, we further reduce the overhead.

Energy

Harvester

Solar

vibration

RF

wind

NVM

Microcontroller

CKP SRAM

CPU

Snooping
Splicing
Replay

Fig. 1. Energy harvesting Checkpoint

II. BACKGROUND AND MOTIVATION

A. Checkpoint Vulnerabilities

The security threat introduced by the checkpoint of
an intermittent system could be because the attacker
has physical access to the device and could employ
techniques like on-chip probing [19]. Additionally, the
attackers can also read/write to the memory through
access ports or the JTAG interface. They can not only
read sensitive information but also modify the data in
non-volatile memory without physically damaging the
device. In the following subsections, we’ll elaborate on
the different types of checkpoint attacks in Fig 1.

1) Checkpoint Snooping: Sensitive data like secret
keys and application variables are available to the at-
tacker when he/she has direct access to the checkpoints.
If Compute Through Power Loss (CTPL) [16] is used,
the attacker can study the utility or detect the pattern and
extract sensitive information by identifying the location
of the checkpoint in the memory.

2) Checkpoint Spoofing: Usually, while restoring the
checkpoints after the power is back on, it is not verified if
the checkpoint was not modified. The attacker can locate
the sensitive variables and change their values without
resetting the CTPL valid flag. Therefore, the device
restores the tampered checkpoint at the next power-
up and continues execution in an attacker-controlled
sequence. The restored checkpoint will not correspond

to a valid system or application state, and it might result
in an unstable state, leading to a system crash.

3) Checkpoint Replay: An attacker can collect a few
or more checkpoints by snooping and overwriting the
current checkpoint in the NVM with an older checkpoint.
This paves a way for the attacker to jump to any point
in the software program since the CTPL does not check
if it is the latest checkpoint before restoration after the
power is back up.

B. Motivation

While working with EHDs like MSP430, using CTPL
is inevitable, and it proves to be disastrous as far as
security is concerned. The checkpoints created need to
be protected, and the main aim of our work is to do the
same. Some of the previous works, as seen in section
3, have tried to secure the data, but with higher energy
overhead. If they have tried to reduce the overhead, they
end up compromising on data protection, or they end
up with tailor-made solutions based on the application,
which can’t be used on platforms where there is a lot
of switching between applications. Some of the state-
of-the-art have also proved that using hardware-based
encryption has less overhead than using software, which
is also used in our work.

The most important components of intermittent com-
puting are recovering the program’s pre-checkpoint state
and ensuring the recovered program’s state is consistent.
There are many approaches to checkpointing [13];
one is backing up all volatile memory to NVM or a
differential checkpointing scheme based on the concept
of tracking changed memory blocks. Next is creating a
checkpoint at a predetermined location every time in the
NVM, which eases run-time development and reduces
NVM requirements, but the checkpoint operation must
be guaranteed to complete; otherwise, part of a previous
checkpoint may be overwritten with the new checkpoint
or make sure that there is a valid checkpoint to restore
any time by having two checkpoints, old and the current
one, which is called double buffering [20].

More efficient methods have been used to lower the
overhead. These include differential checkpointing [6]
(where the time and energy needed for a checkpoint
depend on the total volatile memory size), an energy
monitor program to make sure that the encryption and
checkpointing process starts at the right time to make
sure that every checkpoint is complete and not damaged,
and direct memory access (DMA) [11] to access the
FRAM, which lowers the overhead because it is faster
to get to the internal FRAM memory. Moreover, our
checkpoints are kept in the predetermined location as

2

we make sure our checkpoints are complete from the
previous step.

FRAM

SRAM

DMA

Controller

Encrypt /

Decrypt

Unchanged blocks

Bitmap Protected region

Updated blocks

Encrypted blocks

Checkpoint creation Checkpoint Restoration

Fig. 2. System Overview

III. RELATED WORK

At this day and age, using an energy harvesting system
is inevitable, due to the reduction in the size of the
devices. There has been a lot of research going on for
keeping the data secure during the operation and storage
in the device.

A. Secure with High Energy Overhead

In order to reduce the response latency and the en-
ergy requirement in a harvester-supported system, the
structure is divided into online and offline portions.
The online portion has a real-time dependency on the
availability of data, and the offline portion is previously
computed and stored in the memory to support the online
portion. The cryptographic algorithms are partitioned
into two for securing the online and offline portions; this
is a way of optimizing cryptography in energy harvesting
applications. [15].

Another way of securing the intermittent computing
systems is by protecting the checkpoints stored in the
non-volatile memory from tampering by external adver-
sary sources. Energy harvester devices can be defended
against checkpoint replay attacks by providing assurance
that an application continues where it left off upon power
loss. Suslowicz et al. [14] developed both hardware-
and software-based solutions to solve this problem that
provide data integrity, authenticity, and freshness to
checkpoints, but neither of them solved the high energy
overhead.

Krishnan et al. [9] proposed a protocol that associates
every checkpoint with a unique power-on state to check-
point replay, and every checkpoint is cryptographically
connected to its predecessor. This helps in carrying run-
time security properties when power interruption is used
as an attack vector, which was a problem in the previous
proposals. MSP430 was used to investigate the overhead
of several cryptographic kernels, and they seem to cost
an overhead of tens of seconds and hundreds of mJ
of energy, which is a high overhead for any energy
harvesting device.

B. Non-secure with Low Energy Overhead

In order to reduce the overhead, they introduced
secure intermittent architecture (SIA), with both power-
on and off states, self and remote attestation, and secure
communication [2]. SIA did not have memory protection
when the data was sent over system buses or stored
in external memory from physical attacks, passive (bus
snooping) and active (fault injection) attacks. SIA was
also missing sealing where confidential code or data is
wrapped in such a way that it can only be unwrapped
under a certain configuration of device and/or software
module. Next, the authors come up with an energy-
harvester subsystem interface to optimize the run-time
activity of the intermittent system, such that the wasted
energy is eliminated and that run-time performance is
improved [7]. They also studied the effects on the duty
cycle of an embedded device by providing secure and
stateful power transitions [10] and proposed a config-
urable checkpoint security protocol that is application-
specific, using a suite of embedded benchmark applica-
tions [8].

C. Hardware Implementation with low overhead

Intermittent computing is also practiced in the Cortex
M* series. Asad et al. [1] investigated different means
to protect persistent state and concluded that software
implementation bears a significant overhead in energy
and time, sometimes harming forward progress, but also
retaining the advantage of modularity and easier updates,
and hardware implementations offer lower overhead but
require a deeper understanding of their internals to gauge
their applicability in given application scenarios. On
the other hand, using ARM TrustZone shows almost
negligible overhead, yet it requires different memory
management and is only effective as long as attackers
cannot directly access the NVMs.

3

POWER ON

checkpoint

flag is set?

Yes

V>Von

No

Decrypt

checkpoint
Restore

SR, GPR,

SP and PC

Clear

checkpoint

flag

Yes
Call

Program

No

Set Stack

Pointer to Root

of the Stack

Call

Program

Low

voltage

interrupt

Yes Create

differential

checkpoint

Encrypt and

Authenticate

checkpoint

Store encrypted

checkpoint into

NVM using DMA

No

V<Voff

No
Yes Set

checkpoint

flag

POWER OFF

Fig. 3. Operational Flow

IV. DESIGN

A. System Overview

Fig. 2 shows the overall system overview, consisting
of four blocks: SRAM (volatile memory), which loses
its contents when the device is powered off; FRAM
(non-volatile memory), which retains its data even after
the device is switched off; AES, which is a hardware
module for encryption/decryption of the changed blocks;
and the DMA controller, through which SRAM, FRAM,
and AES communicate with each other. The data in the
SRAM is divided into equal parts called blocks, and
the blocks that change (green) during normal system
operation are kept track of using the bitmap (black). The
purple line and arrows show the checkpoint direction,
where the changed block is encrypted and saved in
the FRAM. In addition, the FRAM also contains the
protected region, which contains some of the OS and
program code, which does not change during the normal
checkpointing process. When the power is back on, the
system restores all the blocks in the checkpoint back
to the SRAM, following the red line and the arrows to
continue normal operation.

B. Operational Flow

The operational flow of the system is explained in
Fig 3; the device switches on when the current voltage
is higher than Von. As soon as it is powered on, the
device continues with the normal operation after the
stack pointer is set at the root of the stack if the
checkpoint flag is not set. Otherwise, the checkpoint
is decrypted, the registers, stack pointer, and program
counter are restored, and the checkpoint flag is cleared
before continuing with the execution of the program. A
low voltage interrupt is caused when there is a sudden

Algorithm 1 Energy Calculation Algorithm
Input: C-capacitance, Vmax-max operating voltage of

the device, Vmin-min operating voltage of the device,
x-voltage interval for energy calculation

Output: Set with Voltage, Energy pair [V,E] at x inter-
val, y-number of [V,E] pairs

1: y = 0
2: for Vi = Vmax to Vmin do
3: Ei = 1/2*CVi

2

4: Save the voltage and corresponding energy in the
set [Vi,Ei]

5: y = y + 1
6: Vi=Vi-x
7: end for
8: return [V,E], y =0

drop in voltage or when there is not enough energy to
continue normal operation, which causes a creation of
a checkpoint. The checkpoint created is a differential
checkpoint; the blocks that have changed since the last
checkpoint are updated to the NVM as seen in Fig. 2.
Moreover, we also encrypt the changed block before
writing to the FRAM, which gives protection from the
checkpoint vulnerabilities as discussed in section 2. In
addition, we also use the DMA to access the FRAM,
which will increase the compute speed in comparison
to using standard I/O peripherals. Whenever the current
voltage goes below VOff, the checkpoint flag is set, and
the device gets powered down.

C. Energy Monitor

1) Energy Pre-Calculation: As discussed in the sys-
tem overview, when there is only enough energy to

4

encrypt and checkpoint the changed blocks, the system
creates a checkpoint before powering off. In order to
compare the energy level at any given time, we have
pre-calculated the energy at multiple voltages and save
it in a set of voltage, energy [V,E] pair. The concept is to
calculate energy for current Vi from Vmax to Vmin at an
interval of x volts as seen in the algorithm 1. The values
of Vmax, Vmin, and x are decided based on the device,
the network connection, and the usage. In addition to
the above, the value of the storage capacitance C is also
given as input to the algorithm. The output will be the
set of voltage and energy [V,E] pairs and the number of
[V,E] pairs in the set as y.

2) Start Checkpoint Process: Even though we have
pre-calculated the energy for different voltages, we also
need to start the process of checkpointing at a particular
current voltage, which is explained in algorithm 2. The
inputs to the algorithm are the maximum and minimum
voltage required for the device in order to encrypt
and checkpoint all the blocks and at least one block,
respectively. We use the calculated set of [V,E] pairs
from the algorithm 1 to compare the energy calculated
with the current energy the device is left with, after
which a decision can be made if there is enough energy
to encrypt and checkpoint the changed blocks. We keep
track of the changed blocks by maintaining a bitmap
M. We also input the total number of blocks and the
number of [V,E] pairs so we know the upper limit to
the number of changed blocks and can search the right
energy number from the set of [V,E] pairs, respectively.

There are two methods the algorithm is triggered: one
is when there is a changed block, and the other is when
there is a low voltage interrupt. In the first method, after
every block has changed, algorithm 2 checks if there is
enough energy to encrypt and checkpoint the blocks that
have changed so far. When the energy required matches
the energy available, the encryption and checkpointing
process is started after the bitmap M is reset. In case
there are a lot of changes in one specific block and
the energy is draining more than expected and we can’t
wait till it moves on to the next block, we use the
second method of triggering a low voltage interrupt after
a certain time to start the encryption and checkpointing
process.

D. AES-CBC Encryption

Advanced Encryption Standard - Cipher Block Chain-
ing (AES-CBC) has been the most commonly used mode
of encryption [18], where each block of plaintext is
XORed with the previous ciphertext block before being
encrypted. Therefore, each ciphertext block depends on

Algorithm 2 Start Checkpoint Algorithm
Input: Vmax-max operating voltage of the device, Vmin-

min operating voltage of the device, Vt-current
voltage, set [V,E], E0-energy needed for encrypting
and checkpoint one block, M-bitmap to record the
changed blocks, m-number of changed blocks, n-
total number of blocks, y-number of [V,E] pairs

1: m = 0
2: i = 0
3: if blocki has changed then
4: set ith bit in M
5: m = m + 1
6: if Vt is between Vmax and Vmin then
7: for j = 1 to y do
8: if Vt is less than or equal to Vj then
9: E = Ej

10: else
11: E = Ej+1
12: end if
13: end for
14: end if
15: if Et is between E0*(m+1) and E0*(m+2) then
16: Reset bitmap M
17: Start Checkpoint
18: Break
19: end if
20: end if
21: if i is between 0 and n then
22: i = i + 1
23: go to 3
24: end if
25: if low voltage interrupt then
26: if Vt is between Vmin and Vmax then
27: if Et is between E0*(m+1) and E0*(m+2) then
28: Reset bitmap M
29: Start Checkpoint
30: Break
31: end if
32: end if
33: end if=0

all plaintext blocks processed up to that point, and to
make each message unique, an initialization vector (IV)
must be used in the first block. So, one does not need
to decrypt the previous block before using it as the IV
for the decryption of the current one; hence, decryption
can be parallelizable, even though the encryption has to
be sequential, which will in turn reduce the latency for
decryption. Another advantage of using CBC is that even

5

if a random cipher block is corrupted, it can be safely
discarded, and the rest of the decryption can be done
with no change in the original plaintext.

E. HMAC

In cryptography, an HMAC (hash-based message au-
thentication code) involves a cryptographic hash function
and a secret cryptographic key, which may be used
to simultaneously verify both the data integrity and
authenticity of a message [4]. HMAC uses two passes
of hash computation. The first pass of the hash algorithm
produces an internal hash derived from the message
and the inner key, and the second pass produces the
final HMAC code derived from the inner hash result
and the outer key. Both the outer and inner keys are
derived from the secret cryptographic key. Therefore,
the algorithm provides better immunity against length
extension attacks caused by using one key and one
pass. The cryptographic strength of the HMAC depends
upon the cryptographic strength of the underlying hash
function, the size of its hash output, and the size and
quality of the key. The size of the output of HMAC is
the same as that of the underlying hash function (e.g.,
256 and 512 bits in the case of SHA-256 and SHA3-512,
respectively), although it can be truncated if desired.

F. Block-based Differential Checkpointing

It is difficult to run programs continuously for de-
vices with intermittent power because the program keeps
important state in volatile memory (SRAM), which is
irretrievably erased when a device loses power, and
execution starts over from the beginning again when the
power is restored. One solution is to save the SRAM state
in the NVM (non-volatile memory) with checkpoints,
which persists even after a power failure. When the
device has enough power again, the system retrieves the
state saved in the NVM and continues execution from
that state. Although several checkpointing strategies have
been proposed, none have given an energy-efficient and
time-saving solution for the EHDs. Since the cost of
a checkpoint is directly proportional to the amount of
memory the checkpoint must save, we have taken mea-
sures to reduce it with a differential checkpoint that saves
the state of a program at specific intervals, recording
only the changes made since the last checkpoint. The
intervals could be a specific time interval, but our pro-
posed technique is designed to perform the differential
checkpointing, being aware of the harvested energy level
at run-time to avoid incomplete checkpoints caused by
sudden power losses.

We analyze the overhead of the checkpoint proce-
dure and present another optimization to decrease the
checkpoint time by splitting the SRAM into blocks and
checkpointing only the changed blocks instead of the
entire SRAM. Our implementation further reduces the
checkpoint time by maintaining the same location in the
FRAM for each block at all times, preserving the pro-
gram state, and ensuring data consistency during recov-
ery after power is restored. Altogether, all our efforts to
mitigate the energy overhead and latency of checkpoint-
ing by understanding the power-failure characteristics of
the harvested energy source have maximized the forward
progress of the program more effectively than the state-
of-the-art techniques.

V. EVALUATION

A. Experimental Set-up

The platform used for the experiments in this project
is the Texas Instruments MSP430FR5994 16MHz micro-
controller. The MSP430FR5994 features a 16-bit RISC
architecture and is equipped with 256KB of FRAM
(Ferroelectric Random Access Memory) and 8KB of
SRAM. We evaluate the performance of the block-based
differential checkpointing by focusing on the latency and
energy consumption of encryption, decryption, hashing,
and checkpointing the contents of SRAM in case of a
voltage drop of the EHDs capacitor. After the measure-
ments of the above parameters, a simulator is used to
run the tests for 5 minutes on each application, and
the progress made is calculated. The energy harvesting
is also included during the simulation for the capacitor
of 60 mF to get charged before progressing further on
the benchmarks in order to avoid power failure. The
experimental results show that the proposed method can
perform with minimal energy and time overhead for a
block size of 128 bytes when compared to the previous
work in the field.

B. Results

The two methods used for AES-128 encryption are
the accelerator in the MSP430FR5994 and the software
program that is run on the microcontroller’s CPU to

TABLE I
COMPARISON METHODS

Method Checkpoint Checkpoint Encryption
Name Contents Option Option
CPU SRAM Entire SRAM CPU SW
CPU SW Changed Blocks CPU SW
DMA SW Changed Blocks DMA SW
CPU Acc Changed Blocks CPU Accelerator
DMA Acc Changed Blocks DMA Accelerator

6

0

2

4

6

8

10

lenet okg har

CPU_SRAM CPU_SW DMA_SW CPU_Acc DMA_Acc

Fig. 4. Progress made by the applications (Normalized to CPU SRAM)
for simulation run of 5 minutes with capacitor 60mF

0

0.2

0.4

0.6

0.8

1

lenet okg har

CPU_SRAM
CPU_SW
DMA_SW
CPU_Acc
DMA_Acc

Fig. 5. Energy Overhead (Normalized to CPU SRAM) for simulation
run of 5 minutes with 60mF capacitor

0

10

20

30

55mF 65mF 75mF

CPU_SRAM

CPU_SW

DMA_SW

CPU_Acc

DMA_Acc

Fig. 6. Progress made by lenet with different capacitors (Normalized
to CPU SRAM) for simulation run of 5 minutes

ensure data confidentiality. After encryption, each block
is hashed using the HMAC-SHA256 algorithm to pro-
vide data integrity. Moreover, we have implemented two
ways of moving the data from SRAM to FRAM during
checkpointing, through DMA and the CPU. To show
the massive improvement of using the DMA, different
methods are shown in TABLE I. The machine learning
applications like LeNet, OKG, and HAR are selected to
stress our model to prove the best of the considerations.

1) Progress: LeNet, OKG, and HAR tests were run
in an energy harvesting environment continuously for
five minutes, and it was observed that the most progress

was made by the option DMA Acc, as seen in Fig. 4. On
average for all three benchmarks, the run time for DMA
SW is 6.56x and DMA Acc is 8.79x of the baseline CPU
SRAM, showing that DMA Acc is the best method to
consider.

2) Energy Overhead: When the CPU SRAM method
is used as the baseline, the energy overhead to encrypt,
hash, and checkpoint for the Accelerator methods is as
low as 0.14x and 0.13x of the CPU SRAM for the CPU
Acc and DMA Acc methods, respectively, on average
for all three benchmarks of LeNet, OKG, and HAR.
Whereas the CPU and DMA SW have, respectively, an
energy overhead of 0.33x and 0.32x of CPU SRAM, as
seen in Fig. 5.

3) Different Capacitors: We decided to investigate
our proposed technique by using different capacitors;
the results are shown in Fig. 6 for lenet. It is clearly
seen that as the capacitor value increases, the difference
between the baseline and the proposed technique seems
to reduce. The highest performer is the CPU Acc at 55
mF with 27.81x of progress made when compared to
CPU SRAM, and the lowest performer is the CPU SW
at 75 mF with 2.78x. Moreover, the latency shows an
opposite trend of 0.06x of the baseline for CPU Acc at
55mF and 0.39x for CPU SW at 75mF as seen in Fig 7.
Hence, it is proved that our proposed technique works
best with lower capacitance, which means less time to
charge and, in turn, to harvest energy.

4) Different Power Sources: Even though the 60mF
capacitor is completely charged before we start to run the
simulation, there is not enough time to recharge with the
Wifi option; recharge it once with the solar and multiple
times with the thermal. The progress made with Thermal
is between 8 and 9 times, with an average of 8.72x, and
the progress made with Solar on average is 1.9x across
all four techniques, including the baseline as seen in Fig
8. The simulation was run on OKG for 20 minutes in
order to give enough time for energy harvesting through
different sources. Results show that our proposed tech-
nique will work well with different energy sources just
like the baseline method. However, having unintercepted
and higher power signals will definitely help with faster
progress.

VI. CONCLUSION

This paper proposes a secure mechanism for check-
pointing in energy harvesting devices, right before the
power failure. The mechanism protects the data from
confidentiality and integrity attacks with low overheads.
Considering the evaluation on progress, latency, and

7

0

0.2

0.4

0.6

0.8

1

55mF 65mF 75mF

CPU_SRAM
CPU_SW
DMA_SW
CPU_Acc
DMA_Acc

Fig. 7. Latency for lenet with different capacitors (Normalized to CPU
SRAM) for simulation run of 5 minutes

0

2

4

6

8

10

CPU_SRAM CPU_SW DMA_SW CPU_Acc DMA_Acc

Wifi Solar Thermal

Fig. 8. Progress made by okg (normalized to CPU SRAM) with
different Power sources for a simulation run of 20 minutes

energy overhead, DMA Acc is an efficient mecha-
nism combined with our energy monitor program and
our block-based differential checkpointing method when
compared to the existing state-of-the-art. Our results also
prove that the proposed technique will work on lower
charging capacitors and with different energy sources in
an effective manner.

REFERENCES

[1] H. A. Asad, E. H. Wouters, N. A. Bhatti, L. Mottola, and
T. Voigt. On securing persistent state in intermittent computing.
In Proceedings of the 8th International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems, pages 8–14,
2020.

[2] D. Dinu, A. S. Khrishnan, and P. Schaumont. Sia: Secure
intermittent architecture for off-the-shelf resource-constrained
microcontrollers. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 208–217,
2019.

[3] T. Eshita, T. Tamura, and Y. Arimoto. Ferroelectric random
access memory (fram) devices. In Advances in non-volatile
memory and storage technology, pages 434–454. Elsevier, 2014.

[4] S. Jiang, X. Zhu, and L. Wang. An efficient anonymous
batch authentication scheme based on hmac for vanets. IEEE
Transactions on Intelligent Transportation Systems, 17(8):2193–
2204, 2016.

[5] O. Kanoun. Energy Harvesting for Wireless Sensor Networks:
Technology, Components and System Design. Walter de Gruyter
GmbH & Co KG, 2018.

[6] K. Keller and L. Bautista-Gomez. Application-level differential
checkpointing for hpc applications with dynamic datasets. In
2019 19th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pages 52–61. IEEE, 2019.

[7] A. Krishnan and P. Schaumont. Hardware support for secure
intermittent architectures. In Workshop on Energy-Secure System
Architectures (ESSA), 2019.

[8] A. S. Krishnan and P. Schaumont. Benchmarking and configuring
security levels in intermittent computing. ACM Transactions on
Embedded Computing Systems (TECS), 2022.

[9] A. S. Krishnan, C. Suslowicz, D. Dinu, and P. Schaumont. Secure
intermittent computing protocol: Protecting state across power
loss. In 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 734–739. IEEE, 2019.

[10] A. S. Krishnan, C. Suslowicz, and P. Schaumont. Secure and
stateful power transitions in embedded systems. Journal of
Hardware and Systems Security, 4(4):263–276, 2020.

[11] S. Ma, L. Huang, Y. Lei, Y. Guo, and Z. Wang. An efficient
direct memory access (dma) controller for scientific computing
accelerators. In 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1–5. IEEE, 2019.

[12] S. Schismenos, M. Chalaris, and G. Stevens. Battery hazards and
safety: A scoping review for lead acid and silver-zinc batteries.
Safety science, 140:105290, 2021.

[13] P. Singla and S. R. Sarangi. A survey and experimental anal-
ysis of checkpointing techniques for energy harvesting devices.
Journal of Systems Architecture, 126:102464, 2022.

[14] C. Suslowicz, A. S. Krishnan, D. Dinu, and P. Schaumont.
Secure application continuity in intermittent systems. In 2018
Ninth International Green and Sustainable Computing Confer-
ence (IGSC), pages 1–8. IEEE, 2018.

[15] C. Suslowicz, A. S. Krishnan, and P. Schaumont. Optimizing
cryptography in energy harvesting applications. In Proceedings
of the 2017 Workshop on Attacks and Solutions in Hardware
Security, pages 17–26, 2017.

[16] TI. TI CTPL. https://www.ti.com/tool/TIDM-FRAM-CTPL/,
2015. [Online; https://www.ti.com/tool/TIDM-FRAM-CTPL5].

[17] S. Umesh and S. Mittal. A survey of techniques for intermittent
computing. Journal of Systems Architecture, 112:101859, 2021.

[18] M. Vaidehi and B. J. Rabi. Design and analysis of aes-cbc
mode for high security applications. In Second International
Conference on Current Trends In Engineering and Technology-
ICCTET 2014, pages 499–502. IEEE, 2014.

[19] H. Wang, D. Forte, M. M. Tehranipoor, and Q. Shi. Probing
attacks on integrated circuits: Challenges and research opportu-
nities. IEEE Design & Test, 34(5):63–71, 2017.

[20] S. Wu, F. Zhou, X. Gao, H. Jin, and J. Ren. Dual-page check-
pointing: An architectural approach to efficient data persistence
for in-memory applications. ACM Transactions on Architecture
and Code Optimization (TACO), 15(4):1–27, 2019.

8

