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Abstract—This work introduces a dynamic partial 
reconfiguration (PR) approach for field-programmable gate 
arrays (FPGAs) to enhance the performance, energy efficiency, 
and adaptability of IoT systems. By enabling run-time 
reconfiguration, PR allows flexible allocation of resources for 
machine learning (ML) tasks, minimizing energy consumption 
and hardware demands. The method replaces fixed-length 
floating-point arithmetic with variable bit-width representations, 
reducing memory usage and computational complexity without 
sacrificing accuracy. Demonstrated on Graph Convolution 
Network (GCN)-YOLO models, this approach efficiently handles 
diverse ML layers while achieving significant improvements in 
resource utilization, latency, and energy savings. These results 
establish a scalable framework for real-time edge intelligence in 
IoT applications. 
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I. INTRODUCTION 
The partial reconfiguration (PR) dynamically reconfigures 

field-programmable gate array (FPGA) hardware to optimize 
resource utilization across various applications from data centers 
to edge devices [1-5]. This paper presents utilizing dynamically 
partial reconfiguration as a solution to the competing demands 
of high performance, good energy efficiency and low latency in 
dynamic environments. Dynamic resource utilization will be 
implemented via partial reconfiguration for flexible computing 
systems to perform task-dependent sensing and machine-
learning-based decision making while ensuring continuity of 
mission-critical tasks. Advances in PR within field-
programmable gate arrays offers run-time reconfiguration of 
hardware while providing potentially lower energy for greater 
functionality. While FPGAs provide a quickly reconfigurable 
hardware platform, much of the issue with FPGA in its present 
usage in nearly any scenario is that it requires more energy than 
an application-specific integrated circuit (ASIC) for the same 
task. For the conventional FPGA-based design, a large amount 
of energy and hardware resource must be allocated for floating-
point arithmetic involving forward pass, gradient calculation, 
and backpropagation for the required precision while 
implementing machine learning (ML) models. The proposed 
method will significantly improve the resource usage and 
computing efficiency of FPGA to surpass ASIC-comparable 

solutions through dynamically exploiting reconfigurable 
algorithm-hardware co-design. 

II. PARTIAL RECONFIGURATION 
This approach can leverage reconfigurable regions within 

FPGAs to accommodate code partitions outside predefined 
clusters like CPU, GPU, or accelerators, automatically 
generating efficient hardware designs for specific computation 
types. Fig. 1(a) illustrates examples of reconfiguration 
scenarios. CONFIG 0-3 represents the sequential utilization of 
regions like A{1,2,3,4}, each potentially containing pipelined 
regions. In event-driven scenarios, Fig. 1(b) shows tasks running 
concurrently, replaced by a low-latency critical function when 

 
Fig. 1. Dynamic partial reconfiguration of FPGAs enables on-the-fly 
accommodation of unmapped code segments, adapting to computing demands 
for sequential, pipelined, and parallel operations as required. 



needed. Fig. 1(c) demonstrates the simultaneous utilization of 
different fabric sections with distinct circuits, optimizing 
resource usage. Fig. 1(d) outlines normal and abnormal 
operations. Proper optimization and scheduling supervised by a 
"static" region (grey block) are essential. In normal mode, non-
critical functions (green container) can overlap or reconfigure 
independently, while in abnormal mode, critical functions (gold 
block) require high performance. After returning to normal, non-
critical functions resume their operation. Further benchmarks 
will assess accuracy and execution time versus resource 
utilization, especially during events that trigger increased 
accuracy requirements. Testing will evaluate power 
consumption, reconfiguration latency, and throughput over 
runtime on real-world data. These PR advancements offer 
runtime hardware adaptation, reducing energy consumption, 
execution time, and compilation errors, while enhancing 
functionality by ensuring efficient execution of specialized code 
partitions on FPGAs. 

III. FPGA IMPLEMENTATION 

A. Architecture Overview 
To meet both resource usage and accuracy requirements, we 

implement our object detection model using a dynamically 
reconfigurable accelerator on an FPGA. Two main challenges 
complicate this implementation. First, the hardware must 

support diverse layer types with unique characteristics: the 
graph convolutional network (GCN) in Fig. 2 primarily involves 
fully connected layers with Sigmoid activations, while the 
YOLO segment contains sequences of convolutional layers, 
batch normalization, and SiLU activations in varying 
configurations. Second, achieving high accuracy on a high-
resolution dataset like VEDAI [6] (1024 × 1024 × 4) demands 
a model that is both deep and wide, making the static mapping 
of all layers onto the FPGA impractical. Many layers have 
weights and activations that exceed the FPGA’s on-chip 
memory capacity of 0.97 MB in an Ultra96-V2 [7]. Overall, the 
model comprises 10 fully connected layers, 125 convolutional 
layers, and 131 activation functions, as outlined in Table I. 

To fulfill our model's need to support diverse layers while 
meeting the resource and area constraints, we leverage FPGA 
dynamically partial reconfiguration [8]. As illustrated in Fig. 3,  
this approach allows the FPGA to be divided into static and 
reconfigurable regions, enabling runtime updates by loading 
configuration files without disrupting ongoing executions. 
These configuration files are stored in main memory, and the 
time required for reconfiguration is proportional to the size of 
the reconfigurable region [9]. Our implementation includes 1 
GCN and 3 CNN accelerator modules with dynamic 
reconfiguration loading and scheduling managed by the ARM 
Cortex-A53 cores. Input images, model parameters, and 
intermediate activations are stored in main memory and 
transferred via Direct Memory Access (DMA) for efficient 
processing. The FPGA fabric is fully allocated to dynamic 
reconfiguration, as smaller partitions cannot accommodate 
substantial workloads. 

B. Hardware Design 
This subsection outlines the implementation and key 

considerations for the accelerator modules. Given the model's 
size, weights and activations are loaded in tiles to fit within 
hardware constraints. Here, 𝑇𝑇𝑥𝑥  denotes the tile size, and x 
represents the index of a parameter set along the X dimension. 

 GCN: The graph convolutional network consists of 10 
fully-connected layers, where each layer processes inputs with 
dimensions 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  and weights sized 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ ×
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, producing an output of dimensions 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

TABLE I: YOLOv5x-GCNx Model Size 

Model Data # of Parameters (M) 

Interface 
Input 4.19 

Output 4.39 

GCN 
Weights 33.6 

Activations 4.19 

YOLO 
Weights 103 

Activations 1,094 
 

 
 

Fig. 2. The five-layer GCN architecture used in this work, where d represents 
the downsampling rate and R indicates the input feature dimension. 

 
Fig. 3. Dynamically reconfigurable design vs. static design of FPGA. Dynamic 
reconfiguration allows for time-multiplexing of workloads. In contrast, static 
design can lead to performance degradation due to resource contention between 
distinct workloads. 



sized. Since activations are relatively small in this section of the 
model, most inter-layer communications occur on-chip, 
minimizing slower accesses to main memory. Within each fully-
connected layer, inputs and weights are loaded in tiles of 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ × 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  elements, respectively. 
These tiles are then fed into a multiply-accumulate (MAC) tree, 
which performs pipelined dot products, as shown in Fig. 4. 

YOLO: The standard 2D-convolution layer (Conv2d) takes 
in 𝐼𝐼𝑑𝑑 input feature maps and produces 𝑂𝑂𝑑𝑑 output feature maps, 
each with dimensions 𝑂𝑂𝑟𝑟 × 𝑂𝑂𝑐𝑐 . Each input feature map is 
convolved with 𝑂𝑂𝑑𝑑 sets of weights, which slide over 𝐾𝐾 − 𝑏𝑏𝑏𝑏 −
𝐾𝐾  regions of the input with a stride of 𝑆𝑆 . The relationship 
between input dimensions and these parameters is given by: 
𝐼𝐼𝑟𝑟/𝐼𝐼𝑐𝑐 = 𝑆𝑆 ⋅ (𝑂𝑂𝑟𝑟/𝑂𝑂𝑐𝑐 − 1) + 𝐾𝐾. The convolution operation can be 
described by the following equation, where 𝑂𝑂 , 𝐼𝐼 , 𝑊𝑊 , and 𝐵𝐵 
denote output, input, weights, and bias, respectively. 
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To efficiently manage the large parameters and activations, 
tiling is applied across dimensions 𝑂𝑂𝑟𝑟 , 𝑂𝑂𝑐𝑐 , 𝑂𝑂𝑑𝑑  , 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑐𝑐 , and 𝐼𝐼𝑑𝑑 . 
Given the substantial size of activation and weights, we utilize a 
dataflow architecture as described in [10], which allocates all 
on-chip memory to tile-sized buffers, thereby reducing access to 
main memory. As shown in Fig. 5, the convolution operation is 
parallelized using 𝑇𝑇𝑜𝑜𝑜𝑜 pipelined MAC tree, each with a width of 

𝑇𝑇𝑖𝑖𝑖𝑖. The degree of parallel computations is determined by 𝑇𝑇𝑖𝑖𝑖𝑖 
and 𝑇𝑇𝑜𝑜𝑜𝑜 , where the tiling sizes are constrained by available 
hardware resources and the specific layer dimensions listed in 
Table II. More specifically, the use of adders and multipliers 
scales with 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑜𝑜𝑜𝑜  and the on-chip buffer size, given by  
𝑇𝑇𝑜𝑜𝑜𝑜 × 𝑇𝑇𝑜𝑜𝑜𝑜 × 𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝐾𝐾2 × 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑜𝑜𝑜𝑜 , must 
remain within the bounds of the total available on-chip memory. 

Batch Normalization: Batch normalization (BN) is widely 
used to promote faster and more stable model convergence by 
normalizing inter-layer activations to achieve zero mean μ and 
unit standard deviation σ. During training, scaling and shifting 
parameters (γ, β) are learned to adjust these normalized values. 
A small constant ϵ is used to avoid division by zero and improve 
numerical stability. To reduce overall computation and data 
transfer, these BN parameters are merged with the convolution 
weights after training, resulting in updated weights 𝑊𝑊′ , and 
biases, 𝐵𝐵′, which are calculated as functions of the learned BN 
parameters, as illustrated in the following equation. 

 

BN(𝑂𝑂[𝑜𝑜𝑑𝑑][𝑜𝑜𝑟𝑟][𝑜𝑜𝑐𝑐]) 

= γ[𝑜𝑜𝑑𝑑] ⋅
(𝑂𝑂[𝑜𝑜𝑑𝑑][𝑜𝑜𝑟𝑟][𝑜𝑜𝑐𝑐] − μ[𝑜𝑜𝑑𝑑])

�σ[𝑜𝑜𝑑𝑑]2 − ϵ
+ β[𝑜𝑜𝑑𝑑] 

= Conv2d(𝐼𝐼,𝑊𝑊′,β′) 

𝑊𝑊′ =
γ ⋅ 𝑊𝑊
√σ2 − ϵ

 ,   𝐵𝐵′ = β +
γ ⋅ (𝐵𝐵 − μ)
√σ2 − ϵ

 

 𝐵𝐵′ = β + γ ⋅ (𝐵𝐵 − μ)/�σ2 − ϵ 

 

 
Fig. 4. One tiled and pipelined dot product operation, where 𝑖𝑖 and 𝑤𝑤 denote 
input and weight, respectively. 

 
Fig. 5. One tiled and pipelined convolution operation, where 𝑖𝑖, 𝑤𝑤, and 𝑜𝑜 denote 
input, weights, and output, respectively. 

TABLE II: Variations of Convolutional Layer Dimensions 

Dimension Variation 

𝑆𝑆 1, 2 

𝐾𝐾 1, 3 

𝑂𝑂𝑟𝑟, 𝑂𝑂𝑐𝑐 64, 128, 256, 512, 1024 

𝑂𝑂𝑑𝑑 51, 80, 160, 320, 640, 1280 

𝐼𝐼𝑑𝑑 4, 80, 160, 320, 640, 1280, 1920, 2560 
 



Activation: To optimize DSP utilization and memory 
transfer, YOLOv5x-GCNx is initially trained in floating-point 
precision and subsequently quantized to a custom 16-bit fixed-
point format, with 7 bits for the integer part and 9 bits for the 
fractional part. Parameter and activation bit-widths are carefully 
selected to minimize accuracy loss, as illustrated in Fig. 6. 
Additionally, the Sigmoid activation function is approximated 
with a low-cost piecewise linear function following the 
approach in [11]. This function is also adapted for the SiLU 
activation function, leveraging the relation SiLU(𝑥𝑥) = 𝑥𝑥 ×
Sigmoid(𝑥𝑥) . To streamline processing, activations are fused 
with the subsequent fully-connected or convolutional layer. 

Dynamic Reconfiguration: Among the four accelerator 
modules, one is specifically customized for GCN, while the 
others represent three variations of convolutional layers used in 
the YOLO component in Fig. 7. The average parallelism of each 
convolutional layer is determined by the tiling along the input 
and output feature map dimensions. Consequently, the 
implementations of these modules vary in their tiling amounts 
to conform to hardware resource constraints and the specific 
layer dimensions detailed in Tables II and III. Since the allocated 
reconfigurable region is essentially the entire FPGA fabric, the 
sizes of the configuration files (4 MB) and the reconfiguration 
times (10 ms) remain relatively constant across all modules. 

Without dynamic reconfiguration, two straightforward 
strategies can be employed: (1) converting all operations into 
matrix-matrix multiplications, or (2) converting all operations 
into convolutions. The im2col method realizes convolutional 
layers as matrix-matrix multiplications, thereby eliminating the 
need for reconfiguration. However, this approach transforms 

input feature maps into columns, resulting in memory 
redundancy of 𝐾𝐾2 × 𝑂𝑂𝑟𝑟 × 𝑂𝑂𝑐𝑐/(𝐼𝐼𝑟𝑟 × 𝐼𝐼𝑐𝑐)  on the input feature 
maps. This redundancy worsens the already large size of 
activations, which dominate off-chip data movement [12]. 
Conversely, the hardware illustrated in Fig. 5 can perform the 
matrix-matrix multiplications utilized in fully connected layers 
by imposing specific constraints on certain dimensions [12]. 
Specifically, these constraints require that 𝑂𝑂𝑟𝑟 = 1, 𝑂𝑂𝑐𝑐 = 1, 𝑆𝑆 =
1, and 𝐾𝐾 = 1, which leads to the following equation . However, 
these constraints are impractical, as they severely limit the 
output feature map dimensions. 

 

𝑂𝑂[𝑜𝑜𝑑𝑑] = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑑𝑑(𝐼𝐼,𝑊𝑊,𝐵𝐵) = �𝑊𝑊[𝑜𝑜𝑑𝑑][𝑖𝑖𝑑𝑑]
𝐼𝐼𝑑𝑑

𝑖𝑖𝑑𝑑

× 𝐼𝐼[𝑖𝑖𝑑𝑑] + 𝐵𝐵[𝑜𝑜𝑑𝑑] 

 

C. Experimental Results 
In this subsection, we discuss the hardware cost associated 

with implementing YOLOv5x-GCNx on the FPGA and 
compare it to existing approaches for accelerating object 
detection. 

A detailed breakdown of hardware resources for all 
accelerator modules is illustrated in Fig. 8. As shown, the FPGA 
has limitations in accommodating any pair of accelerator 
modules due to insufficient resources. This challenge is 
effectively addressed through the dynamic reconfiguration of 
the fabric logic. The total power consumption of the model is 
3.4 W, which includes both static and dynamic power; of this, 
1.7 W is contributed by the ARM CPUs. 

 
Fig. 6. Effects of varying integer bit-widths on model accuracy at different total 
bit-widths. 

TABLE III: Convolutional Layer Accelerator Modules and Tiling Sizes 

Accelerator Module 𝑻𝑻𝒐𝒐𝒐𝒐 𝑻𝑻𝒊𝒊𝒊𝒊 𝑻𝑻𝒐𝒐𝒐𝒐 𝑻𝑻𝒊𝒊𝒊𝒊 SiLU 
1 8 16 64 64 V 
2 32 4 32 64 V 
3 3 64 64 64 X 

 

 
Fig. 7. Dynamically reconfigured detection model with 4 accelerator modules. 

 
Fig. 8. FPGA resource utilization for all accelerator modules after place and 
route on the Ultra96-v2 board. 



Several studies on object detection using FPGAs are 
presented to compare with our implementation in Table IV. 
Given the variations in hardware platforms, objectives, datasets, 
accuracies, and model sizes across these approaches, a direct 
comparison is challenging. Notably, the model sizes and 
resolutions of existing methods are significantly lower than 
those of our proposed work. To ensure fairness, all listed studies 
focus on object detection, employ some variant of YOLO, and 
utilize the same numerical precision. Our analysis prioritizes 
model accuracy and resource usage, which are reflected in chip 
area and total power consumption, demonstrating that the 
proposed approach can efficiently process large model sizes 
with high-resolution datasets. 

IV. CONCLUSIONS 
Advances in PR within FPGAs enable run-time 

reconfiguration of hardware, allowing for adaptive functionality 
while optimizing energy efficiency. In this paper, we present a 
practical implementation strategy that leverages dynamic 
reconfiguration to deploy the proposed model while adhering to 
stringent resource and power constraints on the Ultra96-V2 
board. Our experimental results demonstrate that the proposed 
approach not only achieves superior power efficiency compared 
to existing works but also processes images with six times 
higher resolution, highlighting the scalability and effectiveness 
of the method. These findings underscore the potential of PR-
based FPGA designs for energy-efficient, high-performance 
computing in resource-constrained environments. 
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