
Dynamic Partial Reconfiguration of FPGAs for
Energy-Efficient Machine Learning Inference

in IoT Systems

Ethan Chen, Junting Deng, Chia Jen Cheng, Jiachen Xu, John Kan, Yuyi Shen, and Vanessa Chen
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA, USA

ethanchen@cmu.edu, {juntingd, chiajenc, jxu3, johnkan, yuyis1}@andrew.cmu.edu, and vanessachen@cmu.edu

Abstract—This work introduces a dynamic partial
reconfiguration (PR) approach for field-programmable gate
arrays (FPGAs) to enhance the performance, energy efficiency,
and adaptability of IoT systems. By enabling run-time
reconfiguration, PR allows flexible allocation of resources for
machine learning (ML) tasks, minimizing energy consumption
and hardware demands. The method replaces fixed-length
floating-point arithmetic with variable bit-width representations,
reducing memory usage and computational complexity without
sacrificing accuracy. Demonstrated on Graph Convolution
Network (GCN)-YOLO models, this approach efficiently handles
diverse ML layers while achieving significant improvements in
resource utilization, latency, and energy savings. These results
establish a scalable framework for real-time edge intelligence in
IoT applications.

Keywords — FPGA, Dynamic Partial Reconfiguration, GCN

I. INTRODUCTION
The partial reconfiguration (PR) dynamically reconfigures

field-programmable gate array (FPGA) hardware to optimize
resource utilization across various applications from data centers
to edge devices [1-5]. This paper presents utilizing dynamically
partial reconfiguration as a solution to the competing demands
of high performance, good energy efficiency and low latency in
dynamic environments. Dynamic resource utilization will be
implemented via partial reconfiguration for flexible computing
systems to perform task-dependent sensing and machine-
learning-based decision making while ensuring continuity of
mission-critical tasks. Advances in PR within field-
programmable gate arrays offers run-time reconfiguration of
hardware while providing potentially lower energy for greater
functionality. While FPGAs provide a quickly reconfigurable
hardware platform, much of the issue with FPGA in its present
usage in nearly any scenario is that it requires more energy than
an application-specific integrated circuit (ASIC) for the same
task. For the conventional FPGA-based design, a large amount
of energy and hardware resource must be allocated for floating-
point arithmetic involving forward pass, gradient calculation,
and backpropagation for the required precision while
implementing machine learning (ML) models. The proposed
method will significantly improve the resource usage and
computing efficiency of FPGA to surpass ASIC-comparable

solutions through dynamically exploiting reconfigurable
algorithm-hardware co-design.

II. PARTIAL RECONFIGURATION
This approach can leverage reconfigurable regions within

FPGAs to accommodate code partitions outside predefined
clusters like CPU, GPU, or accelerators, automatically
generating efficient hardware designs for specific computation
types. Fig. 1(a) illustrates examples of reconfiguration
scenarios. CONFIG 0-3 represents the sequential utilization of
regions like A{1,2,3,4}, each potentially containing pipelined
regions. In event-driven scenarios, Fig. 1(b) shows tasks running
concurrently, replaced by a low-latency critical function when

Fig. 1. Dynamic partial reconfiguration of FPGAs enables on-the-fly
accommodation of unmapped code segments, adapting to computing demands
for sequential, pipelined, and parallel operations as required.

needed. Fig. 1(c) demonstrates the simultaneous utilization of
different fabric sections with distinct circuits, optimizing
resource usage. Fig. 1(d) outlines normal and abnormal
operations. Proper optimization and scheduling supervised by a
"static" region (grey block) are essential. In normal mode, non-
critical functions (green container) can overlap or reconfigure
independently, while in abnormal mode, critical functions (gold
block) require high performance. After returning to normal, non-
critical functions resume their operation. Further benchmarks
will assess accuracy and execution time versus resource
utilization, especially during events that trigger increased
accuracy requirements. Testing will evaluate power
consumption, reconfiguration latency, and throughput over
runtime on real-world data. These PR advancements offer
runtime hardware adaptation, reducing energy consumption,
execution time, and compilation errors, while enhancing
functionality by ensuring efficient execution of specialized code
partitions on FPGAs.

III. FPGA IMPLEMENTATION

A. Architecture Overview
To meet both resource usage and accuracy requirements, we

implement our object detection model using a dynamically
reconfigurable accelerator on an FPGA. Two main challenges
complicate this implementation. First, the hardware must

support diverse layer types with unique characteristics: the
graph convolutional network (GCN) in Fig. 2 primarily involves
fully connected layers with Sigmoid activations, while the
YOLO segment contains sequences of convolutional layers,
batch normalization, and SiLU activations in varying
configurations. Second, achieving high accuracy on a high-
resolution dataset like VEDAI [6] (1024 × 1024 × 4) demands
a model that is both deep and wide, making the static mapping
of all layers onto the FPGA impractical. Many layers have
weights and activations that exceed the FPGA’s on-chip
memory capacity of 0.97 MB in an Ultra96-V2 [7]. Overall, the
model comprises 10 fully connected layers, 125 convolutional
layers, and 131 activation functions, as outlined in Table I.

To fulfill our model's need to support diverse layers while
meeting the resource and area constraints, we leverage FPGA
dynamically partial reconfiguration [8]. As illustrated in Fig. 3,
this approach allows the FPGA to be divided into static and
reconfigurable regions, enabling runtime updates by loading
configuration files without disrupting ongoing executions.
These configuration files are stored in main memory, and the
time required for reconfiguration is proportional to the size of
the reconfigurable region [9]. Our implementation includes 1
GCN and 3 CNN accelerator modules with dynamic
reconfiguration loading and scheduling managed by the ARM
Cortex-A53 cores. Input images, model parameters, and
intermediate activations are stored in main memory and
transferred via Direct Memory Access (DMA) for efficient
processing. The FPGA fabric is fully allocated to dynamic
reconfiguration, as smaller partitions cannot accommodate
substantial workloads.

B. Hardware Design
This subsection outlines the implementation and key

considerations for the accelerator modules. Given the model's
size, weights and activations are loaded in tiles to fit within
hardware constraints. Here, 𝑇𝑇𝑥𝑥 denotes the tile size, and x
represents the index of a parameter set along the X dimension.

 GCN: The graph convolutional network consists of 10
fully-connected layers, where each layer processes inputs with
dimensions 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and weights sized 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ ×
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, producing an output of dimensions 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

TABLE I: YOLOv5x-GCNx Model Size

Model Data # of Parameters (M)

Interface
Input 4.19

Output 4.39

GCN
Weights 33.6

Activations 4.19

YOLO
Weights 103

Activations 1,094

Fig. 2. The five-layer GCN architecture used in this work, where d represents
the downsampling rate and R indicates the input feature dimension.

Fig. 3. Dynamically reconfigurable design vs. static design of FPGA. Dynamic
reconfiguration allows for time-multiplexing of workloads. In contrast, static
design can lead to performance degradation due to resource contention between
distinct workloads.

sized. Since activations are relatively small in this section of the
model, most inter-layer communications occur on-chip,
minimizing slower accesses to main memory. Within each fully-
connected layer, inputs and weights are loaded in tiles of
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ × 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 elements, respectively.
These tiles are then fed into a multiply-accumulate (MAC) tree,
which performs pipelined dot products, as shown in Fig. 4.

YOLO: The standard 2D-convolution layer (Conv2d) takes
in 𝐼𝐼𝑑𝑑 input feature maps and produces 𝑂𝑂𝑑𝑑 output feature maps,
each with dimensions 𝑂𝑂𝑟𝑟 × 𝑂𝑂𝑐𝑐 . Each input feature map is
convolved with 𝑂𝑂𝑑𝑑 sets of weights, which slide over 𝐾𝐾 − 𝑏𝑏𝑏𝑏 −
𝐾𝐾 regions of the input with a stride of 𝑆𝑆 . The relationship
between input dimensions and these parameters is given by:
𝐼𝐼𝑟𝑟/𝐼𝐼𝑐𝑐 = 𝑆𝑆 ⋅ (𝑂𝑂𝑟𝑟/𝑂𝑂𝑐𝑐 − 1) + 𝐾𝐾. The convolution operation can be
described by the following equation, where 𝑂𝑂 , 𝐼𝐼 , 𝑊𝑊 , and 𝐵𝐵
denote output, input, weights, and bias, respectively.

 𝑂𝑂[𝑜𝑜𝑑𝑑][𝑜𝑜𝑟𝑟][𝑜𝑜𝑐𝑐] = Conv2d(𝐼𝐼,𝑊𝑊,𝐵𝐵)

= ���𝑊𝑊[𝑜𝑜𝑑𝑑][𝑖𝑖𝑑𝑑][𝑘𝑘𝑖𝑖]�𝑘𝑘𝑗𝑗�
𝐾𝐾

𝑘𝑘𝑗𝑗

𝐾𝐾

𝑘𝑘𝑖𝑖

𝐼𝐼𝑑𝑑

𝑖𝑖𝑑𝑑
× 𝐼𝐼[𝑖𝑖𝑑𝑑][𝑆𝑆 ⋅ 𝑜𝑜𝑟𝑟 + 𝑘𝑘𝑖𝑖]�𝑆𝑆 ⋅ 𝑜𝑜𝑐𝑐 + 𝑘𝑘𝑗𝑗� + 𝐵𝐵[𝑜𝑜𝑑𝑑]

To efficiently manage the large parameters and activations,
tiling is applied across dimensions 𝑂𝑂𝑟𝑟 , 𝑂𝑂𝑐𝑐 , 𝑂𝑂𝑑𝑑 , 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑐𝑐 , and 𝐼𝐼𝑑𝑑 .
Given the substantial size of activation and weights, we utilize a
dataflow architecture as described in [10], which allocates all
on-chip memory to tile-sized buffers, thereby reducing access to
main memory. As shown in Fig. 5, the convolution operation is
parallelized using 𝑇𝑇𝑜𝑜𝑜𝑜 pipelined MAC tree, each with a width of

𝑇𝑇𝑖𝑖𝑖𝑖. The degree of parallel computations is determined by 𝑇𝑇𝑖𝑖𝑖𝑖
and 𝑇𝑇𝑜𝑜𝑜𝑜 , where the tiling sizes are constrained by available
hardware resources and the specific layer dimensions listed in
Table II. More specifically, the use of adders and multipliers
scales with 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑜𝑜𝑜𝑜 and the on-chip buffer size, given by
𝑇𝑇𝑜𝑜𝑜𝑜 × 𝑇𝑇𝑜𝑜𝑜𝑜 × 𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝐾𝐾2 × 𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑜𝑜𝑜𝑜 , must
remain within the bounds of the total available on-chip memory.

Batch Normalization: Batch normalization (BN) is widely
used to promote faster and more stable model convergence by
normalizing inter-layer activations to achieve zero mean μ and
unit standard deviation σ. During training, scaling and shifting
parameters (γ, β) are learned to adjust these normalized values.
A small constant ϵ is used to avoid division by zero and improve
numerical stability. To reduce overall computation and data
transfer, these BN parameters are merged with the convolution
weights after training, resulting in updated weights 𝑊𝑊′ , and
biases, 𝐵𝐵′, which are calculated as functions of the learned BN
parameters, as illustrated in the following equation.

BN(𝑂𝑂[𝑜𝑜𝑑𝑑][𝑜𝑜𝑟𝑟][𝑜𝑜𝑐𝑐])

= γ[𝑜𝑜𝑑𝑑] ⋅
(𝑂𝑂[𝑜𝑜𝑑𝑑][𝑜𝑜𝑟𝑟][𝑜𝑜𝑐𝑐] − μ[𝑜𝑜𝑑𝑑])

�σ[𝑜𝑜𝑑𝑑]2 − ϵ
+ β[𝑜𝑜𝑑𝑑]

= Conv2d(𝐼𝐼,𝑊𝑊′,β′)

𝑊𝑊′ =
γ ⋅ 𝑊𝑊
√σ2 − ϵ

 , 𝐵𝐵′ = β +
γ ⋅ (𝐵𝐵 − μ)
√σ2 − ϵ

 𝐵𝐵′ = β + γ ⋅ (𝐵𝐵 − μ)/�σ2 − ϵ

Fig. 4. One tiled and pipelined dot product operation, where 𝑖𝑖 and 𝑤𝑤 denote
input and weight, respectively.

Fig. 5. One tiled and pipelined convolution operation, where 𝑖𝑖, 𝑤𝑤, and 𝑜𝑜 denote
input, weights, and output, respectively.

TABLE II: Variations of Convolutional Layer Dimensions

Dimension Variation

𝑆𝑆 1, 2

𝐾𝐾 1, 3

𝑂𝑂𝑟𝑟, 𝑂𝑂𝑐𝑐 64, 128, 256, 512, 1024

𝑂𝑂𝑑𝑑 51, 80, 160, 320, 640, 1280

𝐼𝐼𝑑𝑑 4, 80, 160, 320, 640, 1280, 1920, 2560

Activation: To optimize DSP utilization and memory
transfer, YOLOv5x-GCNx is initially trained in floating-point
precision and subsequently quantized to a custom 16-bit fixed-
point format, with 7 bits for the integer part and 9 bits for the
fractional part. Parameter and activation bit-widths are carefully
selected to minimize accuracy loss, as illustrated in Fig. 6.
Additionally, the Sigmoid activation function is approximated
with a low-cost piecewise linear function following the
approach in [11]. This function is also adapted for the SiLU
activation function, leveraging the relation SiLU(𝑥𝑥) = 𝑥𝑥 ×
Sigmoid(𝑥𝑥) . To streamline processing, activations are fused
with the subsequent fully-connected or convolutional layer.

Dynamic Reconfiguration: Among the four accelerator
modules, one is specifically customized for GCN, while the
others represent three variations of convolutional layers used in
the YOLO component in Fig. 7. The average parallelism of each
convolutional layer is determined by the tiling along the input
and output feature map dimensions. Consequently, the
implementations of these modules vary in their tiling amounts
to conform to hardware resource constraints and the specific
layer dimensions detailed in Tables II and III. Since the allocated
reconfigurable region is essentially the entire FPGA fabric, the
sizes of the configuration files (4 MB) and the reconfiguration
times (10 ms) remain relatively constant across all modules.

Without dynamic reconfiguration, two straightforward
strategies can be employed: (1) converting all operations into
matrix-matrix multiplications, or (2) converting all operations
into convolutions. The im2col method realizes convolutional
layers as matrix-matrix multiplications, thereby eliminating the
need for reconfiguration. However, this approach transforms

input feature maps into columns, resulting in memory
redundancy of 𝐾𝐾2 × 𝑂𝑂𝑟𝑟 × 𝑂𝑂𝑐𝑐/(𝐼𝐼𝑟𝑟 × 𝐼𝐼𝑐𝑐) on the input feature
maps. This redundancy worsens the already large size of
activations, which dominate off-chip data movement [12].
Conversely, the hardware illustrated in Fig. 5 can perform the
matrix-matrix multiplications utilized in fully connected layers
by imposing specific constraints on certain dimensions [12].
Specifically, these constraints require that 𝑂𝑂𝑟𝑟 = 1, 𝑂𝑂𝑐𝑐 = 1, 𝑆𝑆 =
1, and 𝐾𝐾 = 1, which leads to the following equation . However,
these constraints are impractical, as they severely limit the
output feature map dimensions.

𝑂𝑂[𝑜𝑜𝑑𝑑] = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑑𝑑(𝐼𝐼,𝑊𝑊,𝐵𝐵) = �𝑊𝑊[𝑜𝑜𝑑𝑑][𝑖𝑖𝑑𝑑]
𝐼𝐼𝑑𝑑

𝑖𝑖𝑑𝑑

× 𝐼𝐼[𝑖𝑖𝑑𝑑] + 𝐵𝐵[𝑜𝑜𝑑𝑑]

C. Experimental Results
In this subsection, we discuss the hardware cost associated

with implementing YOLOv5x-GCNx on the FPGA and
compare it to existing approaches for accelerating object
detection.

A detailed breakdown of hardware resources for all
accelerator modules is illustrated in Fig. 8. As shown, the FPGA
has limitations in accommodating any pair of accelerator
modules due to insufficient resources. This challenge is
effectively addressed through the dynamic reconfiguration of
the fabric logic. The total power consumption of the model is
3.4 W, which includes both static and dynamic power; of this,
1.7 W is contributed by the ARM CPUs.

Fig. 6. Effects of varying integer bit-widths on model accuracy at different total
bit-widths.

TABLE III: Convolutional Layer Accelerator Modules and Tiling Sizes

Accelerator Module 𝑻𝑻𝒐𝒐𝒐𝒐 𝑻𝑻𝒊𝒊𝒊𝒊 𝑻𝑻𝒐𝒐𝒐𝒐 𝑻𝑻𝒊𝒊𝒊𝒊 SiLU
1 8 16 64 64 V
2 32 4 32 64 V
3 3 64 64 64 X

Fig. 7. Dynamically reconfigured detection model with 4 accelerator modules.

Fig. 8. FPGA resource utilization for all accelerator modules after place and
route on the Ultra96-v2 board.

Several studies on object detection using FPGAs are
presented to compare with our implementation in Table IV.
Given the variations in hardware platforms, objectives, datasets,
accuracies, and model sizes across these approaches, a direct
comparison is challenging. Notably, the model sizes and
resolutions of existing methods are significantly lower than
those of our proposed work. To ensure fairness, all listed studies
focus on object detection, employ some variant of YOLO, and
utilize the same numerical precision. Our analysis prioritizes
model accuracy and resource usage, which are reflected in chip
area and total power consumption, demonstrating that the
proposed approach can efficiently process large model sizes
with high-resolution datasets.

IV. CONCLUSIONS
Advances in PR within FPGAs enable run-time

reconfiguration of hardware, allowing for adaptive functionality
while optimizing energy efficiency. In this paper, we present a
practical implementation strategy that leverages dynamic
reconfiguration to deploy the proposed model while adhering to
stringent resource and power constraints on the Ultra96-V2
board. Our experimental results demonstrate that the proposed
approach not only achieves superior power efficiency compared
to existing works but also processes images with six times
higher resolution, highlighting the scalability and effectiveness
of the method. These findings underscore the potential of PR-
based FPGA designs for energy-efficient, high-performance
computing in resource-constrained environments.

ACKNOWLEDGMENT
This work was supported in part by the Defense Advanced

Research Projects Agency (DARPA) under Award HR0011-24-

2-0350, and in part by the National Science Foundation under
Grant 1953801.

REFERENCES
[1] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,

S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A.
Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,
E. S. Chung, and D. Burger, “A configurable cloud-scale DNN processor
for real-time AI,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 1–14, 2018.

[2] L. Cardona, B. Lorente, and C. Ferrer, “Partial crypto-reconfiguration of
nodes based on FPGA for wsn,” in 2014 International Carnahan
Conference on Security Technology (ICCST), pp. 1–4, 2014.

[3] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial
reconfiguration in FPGA systems: A survey and a cost model,” ACM
Trans. Reconfigurable Technol. Syst., vol. 4, Dec 2011.

[4] H. Al-Aqrabi, A. P. Johnson, and R. Hill, “Dynamic multiparty
authentication using cryptographic hardware for the internet of things,” in
2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computing, Scalable Computing Communications, Cloud Big
Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 21–28,
2019.

[5] R. Garcia, A. Gordon-Ross, and A. D. George, “Exploiting partially
reconfigurable FPGAs for situation-based reconfiguration in wireless
sensor networks,” in 2009 17th IEEE Symposium on Field Programmable
Custom Computing Machines, pp. 243–246, 2009.

[6] S. Razakarivony and F. Jurie, “Vehicle detection in aerial imagery : A
small target detection benchmark,” Journal of Visual Communication and
Image Representation, vol. 34, pp. 187–203, 2016.

[7] https://www.xilinx.com/products/boards-and-kits/1-vad4rl.html.
[8] K. Vipin and S. A. Fahmy, “Fpga dynamic and partial reconfiguration: A

survey of architectures, methods, and applications,” ACM Comput. Surv.,
vol. 51, July 2018.

[9] M. Nguyen, N. Serafin, and J. C. Hoe, “Partial reconfiguration for design
optimization,” in 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), pp. 328–334, 2020.

[10] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,” in
Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, (New York, NY, USA), p.
161–170, Association for Computing Machinery, 2015.

[11] I. Tsmots, O. Skorokhoda, and V. Rabyk, “Hardware implementation of
sigmoid activation functions using fpga,” in 2019 IEEE 15th International
Conference on the Experience of Designing and Application of CAD
Systems (CADSM), pp. 34–38, 2019.

[12] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[13] Q. Xiong, C. Liao, Z. Yang, and W. Gao, “A method for accelerating yolo
by hybrid computing based on arm and fpga,” in Proceedings of the 2021
4th International Conference on Algorithms, Computing and Artificial
Intelligence, ACAI ’21, (New York, NY, USA), Association for
Computing Machinery, 2022.

[14] S. Zhang, J. Cao, Q. Zhang, Q. Zhang, Y. Zhang, and Y. Wang, “An
fpga-based reconfigurable cnn accelerator for yolo,” in 2020 IEEE 3rd
International Conference on Electronics Technology (ICET), pp. 74–78,
2020.

TABLE IV: Comparison with Previous Works

Metric This Work ACAI ’21 [13] ICET ’20 [14]
Platform Ultra96-V2 ZYNQ-7035 ZCU102

Frequency 150 MHz 100 MHz 300 MHz
Precision 16-b 16-b 16-b

Data VEDAI COCO COCO
Channels RGB+IR RGB RGB

Resolution 1024×1024 416×416 416×416
#FC 10 0 0

#Conv2d 125 13 9
Size(GFLOPS) 2530 5.56 29.5

FF 71,760 - 90,989
LUT 46,929 61,700 95,136
DSP 201 485 609

BRAM 161 248 491
Power (W) 3.4 3.71 11.8

https://www.xilinx.com/products/boards-and-kits/1-vad4rl.html

	I. Introduction
	II. Partial Reconfiguration
	III. FPGA Implementation
	A. Architecture Overview
	B. Hardware Design
	C. Experimental Results

	IV. Conclusions
	Acknowledgment
	References

