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Abstract—Object detection is a fundamental task in computer
vision, with critical applications in autonomous driving, surveil-
lance, and robotics. Traditional object detection models primarily
rely on RGB images, which perform well under favorable lighting
but degrade in low-visibility environments such as nighttime or
adverse weather. Infrared (IR) imagery, which captures thermal
information, offers improved performance in such conditions
but lacks structural and color details. Combining RGB and
IR modalities has the potential to enhance detection accuracy
by leveraging their complementary strengths. However, RGB-IR
fusion for aerial imagery remains underexplored, and the scarcity
of publicly available paired datasets further limits research in
this area. Additionally, implementing onboard fusion models for
aerial applications, such as on drones, poses significant challenges,
including feature-level fusion complexity and high computational
overhead. In this work, we propose an efficient RGB-IR fusion
framework specifically designed for aerial image datasets. Our
framework integrates pixel-level fusion and transformer-based
feature-level fusion to capture both low-level and high-level
cross-modal interactions. To address computational constraints,
we introduce a token selection mechanism that dynamically
selects the most informative tokens, reducing inference time while
maintaining high detection performance. Extensive experiments
conducted on an RGB-IR aerial image dataset demonstrate that
our proposed framework significantly improves detection accuracy
and computational efficiency.

I. INTRODUCTION

Object detection is a key task in computer vision, with
critical applications in autonomous driving, surveillance [1]–
[3], and robotics [4], [5]. Traditional object detection models
predominantly rely on RGB images, which capture rich visual
information under favorable lighting conditions. However, their
performance declines considerably in low-visibility scenarios,
such as nighttime or adverse weather, where RGB data alone
proves insufficient. Infrared (IR) imagery, which records ther-
mal signatures, provides an advantage in such conditions by
enhancing visibility. Despite this benefit, IR imagery lacks the
structural and color details inherent in RGB images, leading
to reduced performance when used independently. The fusion
of RGB and IR modalities offers the potential to overcome
these individual limitations by leveraging their complementary
strengths, resulting in improved detection performance across
diverse environmental conditions [6]–[9].

Although multimodal fusion methods have been widely stud-
ied, most existing works focus on fusing point cloud data from
LiDAR with RGB images or combining RGB images from
different viewpoints. Few studies have specifically explored
RGB-IR fusion in robotics or real-time systems, and even
fewer have addressed its application in aerial imagery [10],
[11]. This is especially significant given the growing demand
for accurate aerial monitoring in fields such as environmental

surveillance, agriculture, and search-and-rescue operations. Ad-
ditionally, publicly available RGB-IR paired datasets for aerial
imagery are scarce, which hampers progress in developing
advanced fusion techniques for such applications. Compared
to LiDAR, IR sensors offer distinct advantages for short-
range sensing, including lower cost and reliable performance
in low-light environments, making RGB-IR fusion a promising
direction for efficient, cost-effective object detection solutions.

Despite its promise, RGB-IR fusion presents significant chal-
lenges when applied to IoT devices, particularly drones. Beyond
the scarcity of datasets, several technical hurdles must be
addressed. First, the inherent differences between RGB and IR
modalities complicate effective feature-level fusion, especially
in aerial imagery where objects are often small and exhibit
significant variability [12], [13]. Second, deploying large-
scale fusion models in resource-constrained IoT environments
requires careful optimization to balance detection accuracy with
computational efficiency, ensuring low latency and minimal
energy consumption for real-time operations [14], [15].

To address these challenges, we propose an efficient RGB-IR
fusion framework tailored specifically for aerial image datasets.
The framework is composed of two core components, including
fusion strategies and a token selection mechanism. In the
first step, we explore both pixel-level fusion, which directly
combines RGB and IR images, and transformer-based feature-
level fusion, which captures complex cross-modal interactions
for enhanced detection [16], [17]. To reduce inference time and
computational overhead, we then introduce a token selection
mechanism that dynamically selects the most informative to-
kens for feature representation, enabling faster detection while
maintaining accuracy [18], [19].

Our primary contributions can be summarized as follows:
• An RGB-IR fusion framework tailored for aerial imagery,

combining pixel-level and transformer-based feature-level
fusion to enhance detection in low-visibility environments.

• Development of a token selection mechanism integrated
with a detection transformer (DETR) model to improve
computational efficiency.

• Comprehensive evaluation of the proposed approach on a
paired RGB-IR aerial image dataset, highlighting signifi-
cant improvements in detection accuracy and efficiency.

II. RELATED WORK

A. Traditional Methods

Traditional image fusion methods that do not involve neural
networks have been widely studied in the literature. These
methods primarily focus on pixel-level fusion techniques that



directly combine information from multiple modalities, such
as RGB and IR images, using mathematical transformations.
Some of the most commonly used traditional methods include:

• Discrete Cosine Transform (DCT): This method trans-
forms an image into the frequency domain, allowing
the selection of significant frequency components for
fusion [20], [21].

• Sparse Representation (SR): SR methods represent im-
ages as a linear combination of sparse basis functions,
enabling efficient fusion by retaining only the most critical
features [22], [23].

• Principal Component Analysis (PCA): PCA is a sta-
tistical method that reduces dimensionality by projecting
data onto principal components. It is often used in image
fusion to extract important features from both RGB and
IR images [24], [25].

While these methods are computationally efficient and
straightforward to implement, they fail to capture complex
interactions between different modalities. Additionally, tradi-
tional pixel-level fusion techniques are often unable to adapt to
varying environmental conditions, such as changes in lighting
or weather.

B. AI-Related Methods

With the rise of deep learning, various AI-based methods
have been proposed to enhance image fusion for object de-
tection. These methods can be categorized into three main
approaches:

• Early Fusion: In early fusion, RGB and IR images are
combined at the input level before feature extraction. This
approach is simple but often results in suboptimal perfor-
mance due to the loss of modality-specific information [6],
[26].

• Mid Fusion: Mid fusion involves extracting features sepa-
rately from RGB and IR images and then combining them
at an intermediate layer within the neural network. This
approach allows for more complex interactions between
modalities and generally achieves better performance than
early fusion [13], [27].

• Late Fusion: In late fusion, RGB and IR images are
processed independently, and their outputs are combined
at the decision-making stage using ensemble methods such
as non-maximum suppression (NMS) [28], [29].

Transformer-based models have also gained traction in the
field of object detection. Models like DETR (DEtection TRans-
former) [30], [31] reformulate object detection as a set pre-
diction problem, eliminating the need for traditional anchor
boxes and non-maximum suppression. However, these models
come with a significant computational cost, which limits their
applicability in real-time systems.

To address this issue, token selection mechanisms have been
proposed to reduce the number of input tokens processed by
the transformer, thereby improving efficiency without compro-
mising accuracy [18], [32], [33].

C. Efficient AI

Efficiency is a critical requirement for deploying AI models
in real-time applications, particularly on resource-constrained
devices such as drones and IoT systems. Several techniques
have been explored to improve the efficiency of transformer-
based models and multimodal fusion frameworks:

• Pruning and Quantization: These techniques involve
reducing the size of neural networks by removing re-
dundant weights (pruning) or using lower-precision data
types (quantization) to reduce memory usage and improve
inference speed [34]–[36].

• Token Selection Mechanisms: Token selection methods
dynamically select a subset of the most relevant input
tokens from the fused image, significantly reducing the
computational load of transformer-based models while
maintaining accuracy [18], [32], [33] .

• Knowledge Distillation: This technique involves training
a smaller, more efficient model (the student) to mimic the
behavior of a larger, more complex model (the teacher),
resulting in faster and more efficient inference [?].

Despite these advancements, there are still gaps in the
existing literature, particularly in the context of RGB-IR fusion
for real-time object detection in aerial imagery. Most existing
works focus on LiDAR-based fusion or multimodal fusion for
ground-based applications. This work addresses these gaps by
combining transformer-based feature-level fusion with token
selection to develop an efficient object detection framework
tailored for aerial RGB-IR datasets.

III. MOTIVATION ANALYSIS

(a) (b)

Fig. 1: Examples of RGB and IR Images for a Single Scenario
with Ground Truth Bounding Boxes: (a) RGB, and (b) IR.

Traditional object detection models primarily rely on RGB
images, which perform well under favorable lighting but
degrade significantly in low-visibility environments such as
nighttime, fog, or adverse weather conditions. These limitations
arise because RGB sensors depend heavily on ambient light,
making it challenging to detect objects in dark or occluded
scenes [37], [38]. Conversely, infrared (IR) sensors capture
thermal radiation, providing consistent visibility regardless of
lighting conditions [39], [40].

Fig. 1 illustrates this limitation by showing RGB and IR
images captured for a single scenario (same time and same
location). In the RGB image, only one object is faintly visible
due to poor lighting, whereas the IR image clearly reveals
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24 densely packed objects, highlighting the superiority of IR
imaging in low-visibility environments [41], [42].

TABLE I: Annotation Details for Vehicle Categories

Category RGB Annotations IR Annotations
Car 389,779 428,086
Truck 22,123 25,960
Bus 15,333 16,590
Van 11,935 12,708
Freight Car 13,400 17,173

Furthermore, in the DroneVehicle dataset [43], which in-
cludes paired RGB and IR images, the RGB images contain
452,570 annotation bounding boxes, while the IR images have
500,517 annotation boxes, as shown in Table I. This disparity
emphasizes the complementary nature of these modalities, as
IR images often detect objects that RGB images miss and vice
versa. Therefore, retrieving comprehensive information from
both IR and RGB images plays a crucial role in enhancing the
robustness of object detection systems in diverse environmental
conditions [7], [21].

Despite the clear advantages of combining IR and RGB data,
there are relatively few works focusing on IR and RGB fusion
for object detection. Most existing research targets LIDAR and
RGB image fusion[13], [44] . Developing effective IR and
RGB fusion methods could significantly improve performance
in scenarios such as autonomous driving, search and rescue
operations, and surveillance, where reliable detection in all
lighting conditions is essential.

IV. PROBLEM DEFINITION

Let D = {(XRGB
i , X IR

i , Y RGB
i , Y IR

i )}Ni=1 represent an aerial
dataset consisting of N paired samples, where each XRGB

i ∈
RH×W×3 denotes an RGB image, X IR

i ∈ RH×W×1 represents
the corresponding infrared image, and Y RGB

i , Y IR
i contain the

ground truth bounding box annotations for objects in the RGB
and IR images, respectively [45], [46]. The unified ground
truth bounding boxes Yi are defined as the union of Y RGB

i and
Y IR
i :

Yi = Y RGB
i ∪ Y IR

i . (1)

The goal is to develop an object detection model fθ param-
eterized by θ, capable of predicting bounding boxes and class
labels by leveraging fused information from both RGB and IR
modalities [47], [48].

To address the fusion of RGB and IR images, we define
a fusion function F : RH×W×3 × RH×W×1 → RH×W×d,
where d denotes the number of feature channels in the fused
representation. The fused feature map Zi for a given pair
(XRGB

i , X IR
i ) can be expressed as:

Zi = F (XRGB
i , X IR

i ), (2)

where F may involve pixel-level concatenation, attention-based
feature fusion, or a transformer-based fusion mechanism [49],
[50].

The object detection model fθ operates on the fused repre-
sentation Zi and outputs a set of predicted bounding boxes
Ŷi = {(b̂ij , ĉij)}Mi

j=1, where b̂ij ∈ R4 represents the j-th

bounding box coordinates, and ĉij ∈ {1, . . . ,K} denotes the
corresponding class label among K possible classes. Formally,
the object detection process can be expressed as:

Ŷi = fθ(Zi) = fθ(F (XRGB
i , X IR

i )). (3)

To train the model, we minimize a multi-task loss function
L(θ) that combines the bounding box regression loss Lbbox and
the classification loss Lcls for all training samples:

L(θ) = 1

N

N∑
i=1

(
Lcls(Yi, Ŷi) + λLbbox(Yi, Ŷi)

)
, (4)

where λ is a hyperparameter that controls the balance between
the two loss components.

Given the computational constraints in IoT devices, such as
drones [51], [52], we introduce a token selection mechanism
T : RH×W×d → Rm×d that selects the top m most informative
tokens from the fused feature map Zi. The final token-reduced
representation Z̃i is then given by:

Z̃i = T (Zi), (5)

where m ≪ H×W to reduce the computational complexity and
inference latency. The object detection model is subsequently
applied to Z̃i to produce the final predictions.

V. ALGORITHM DESIGN

A. Overview of the Proposed Framework

As shown in Fig. 2, the proposed framework integrates three
main components: RGB and IR image fusion, token selection,
and object detection [53], [54]. In the image fusion step, two
distinct paths are employed, pixel-level fusion and transformer-
based fusion [55], [56]. The pixel-level fusion path adjusts a
weighting parameter α to combine the RGB and IR images,
preserving low-level features such as edges and textures from
both modalities. In the transformer-based fusion path, RGB
image queries are used to extract relevant information from the
IR image, resulting in fused high-level feature representations.
The outputs from both paths are concatenated to form the final
fused feature map. Once the fused feature map is obtained,
token selection is applied to identify and retain the most
informative tokens, reducing the computational overhead of
subsequent transformer operations. The selected tokens are then
fed into a detection decoder to produce object bounding boxes
and class labels.

B. RGB and IR Image Fusion

Given an RGB image IRGB ∈ RH×W×3 and an IR image
IIR ∈ RH×W×1, we define the pixel-level fused image Fpixel
as:

Fpixel = αIRGB + (1− α)IIR, (6)

where α ∈ [0, 1] is a tunable parameter controlling the contri-
bution of each modality. This approach ensures that low-level
features from both modalities are preserved.

For the transformer-based fusion, let QRGB ∈ Rhq×d denote
the query embeddings obtained from the RGB image, and
KIR, VIR ∈ Rhk×d denote the key and value embeddings
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Fig. 2: An overview of our proposed framework for object detection through the fusion of RGB and IR images.

obtained from the IR image [57], [58]. The fused feature map
Ftrans is computed using multi-head attention:

Attention(QRGB,KIR, VIR) = softmax
(
QRGBK

⊤
IR√

d

)
VIR, (7)

Ftrans = Concat(head1, . . . , headh)W
O, (8)

where h denotes the number of attention heads, and WO is
a learnable projection matrix. The final fused feature map F
is obtained by concatenating the outputs of the pixel-level and
transformer-based fusion paths:

F = Concat(Fpixel, Ftrans). (9)

To ensure consistency in the fused feature map, we minimize
a reconstruction loss Lrecon:

Lrecon =
1

N

N∑
i=1

(
∥Fi − IRGB,i∥22 + ∥Fi − IIR,i∥22

)
, (10)

where N is the total number of training samples.

C. Token Selection for Lightweight Feature Representation
Learning

To reduce the computational complexity of the downstream
object detection task, we introduce a token selection mechanism
that retains only the most informative tokens from the fused
feature map [59], [60]. Let T ∈ RHW×d denote the tokenized
representation of the fused image F . The informativeness score
for each token ti ∈ T is computed using a learnable scoring
function ϕ : Rd → R:

si = ϕ(ti) = MLP(ti), (11)

where MLP denotes a multi-layer perceptron. The top m
tokens with the highest scores are selected, where m is a
hyperparameter controlling the number of retained tokens. The
selected tokens T̃ ∈ Rm×d are given by:

T̃ = Top-m(T, s). (12)

After applying the token selection mechanism to obtain the
reduced token set T̃ ∈ Rm×d, the selected tokens are integrated
into the feature representation map F and subsequently passed
through the object detection pipeline [61], [62].

VI. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed
framework on the RGB-IR paired image dataset, DroneVehi-
cle [43], [63], [64]. We first introduce the experimental setup,
detailing the dataset, evaluation metrics, and implementation
specifics. Next, a comprehensive performance overview is pre-
sented through quantitative evaluation, analyzing the detection
accuracy and computational efficiency of various fusion tech-
niques [65], [66]. We then conduct a qualitative evaluation
using three visualized examples, highlighting the strengths and
weaknesses of each method under different lighting and noise
conditions. Finally, the limitations of the proposed approach
are discussed

A. Experimental Settings

Dataset. DroneVehicle dataset comprises a total of 28,439
groups of paired RGB and IR images, capturing five distinct
vehicle categories: car, truck, bus, van, and freight car. The
annotation statistics for these categories are summarized in
Table I. Each image pair is provided at a resolution of 840×712
pixels, ensuring high-quality visual data for comprehensive
analysis.
Evaluation Metrics. We evaluated the proposed framework
from three key perspectives: (1) object detection performance
on the fused image, assessed using mean Average Precision
(mAP); (2) the quality of the fused image, which is crucial
for downstream object detection, measured by Mean Squared
Error (MSE) and Structural Similarity Index (SSIM); and (3)
inference time, which evaluates the efficiency of the proposed
framework.
Baselines. To assess the effectiveness of the proposed token
selection-based object detection framework for fused RGB-IR
images, we compare it against several baseline models: Faster
R-CNN applied to RGB images alone, Faster R-CNN applied to
IR images alone, and object detection from fused images using
traditional pixel-value-based fusion, transformer-based feature
fusion, and the proposed framework.
Implementation Details. The proposed framework was imple-
mented using the PyTorch deep learning framework, leveraging
pre-trained ImageNet weights for the backbone networks to
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TABLE II: Performance Overview for Object Detectionn from the Fused Image.

Model mAP@0.5 mAP@0.75 mAP@0.95 Avg. mAP Inference Time (ms)
RGB (Faster R-CNN) 0.4417 0.3210 0.2015 0.3214 145.8
IR (Faster R-CNN) 0.5421 0.4105 0.2806 0.4111 146.3
Pixel-Level Fusion 0.6972 0.5821 0.3610 0.5468 150.2
Transformer-Level Fusion (DETR) 0.7998 0.6412 0.4015 0.6142 115.6
Ours w/o Token Selection 0.8321 0.7015 0.4723 0.6686 115.6
Ours 0.6998 0.5322 0.4552 0.5624 78.7

accelerate convergence and improve feature extraction quality
[67], [68]. The AdamW optimizer was employed with an initial
learning rate of 1 × 10−4 and a weight decay of 1 × 10−5.
The model was trained for 50 epochs with a batch size of 64.
The training were conducted on an NVIDIA A100 GPU with
40 GB, providing sufficient computational power and memory
to handle the high-resolution RGB-IR paired images from the
DroneVehicle dataset.

B. Experimental Results

Quantitative results. Table II presents the performance com-
parison of different object detection models and fusion tech-
niques for RGB-IR images. The evaluation considers mean
Average Precision (mAP) at IoU thresholds of 0.5, 0.75, and
0.95, along with the average mAP and inference time. The
results show that the IR-based Faster R-CNN model outper-
forms the RGB-based model, achieving an average mAP of
0.4111 compared to 0.3214, indicating the superior feature
quality of IR images for object detection. When combining both
modalities, pixel-level fusion improves accuracy to an average
mAP of 0.5468, though it increases inference time to 150.2
milliseconds. Transformer-based feature fusion with DETR
further enhances performance, achieving an average mAP of
0.6142 while reducing inference time to 115.6 milliseconds.
This suggests that feature-level fusion provides a better balance
between accuracy and efficiency compared to pixel-level fusion.
Our proposed framework, without token selection, achieves
the highest accuracy with an average mAP of 0.6686 but
maintains the same inference time of 115.6 milliseconds. When
incorporating the token selection mechanism, the inference time
is significantly reduced to 78.7 milliseconds, while maintaining
a competitive average mAP of 0.5624. This demonstrates that
token selection effectively reduces computational complexity
while preserving detection performance.

Table III presents the performance comparison of different
models for RGB-IR image fusion using MAE and SSIM as
evaluation metrics. The RGB and IR models, which process
single modalities, achieve MAE values of 0.2000 and 0.1614,
with SSIM scores of 0.7000 and 0.7772, respectively. These
results indicate that IR images provide more useful structural
information than RGB images. The fusion model, which com-
bines both modalities, improves performance with an MAE of
0.1018 and an SSIM of 0.8963, highlighting the benefits of
multi-modal fusion. Transformer-based fusion further enhances
the results, achieving an MAE of 0.0624 and an SSIM of
0.9752, demonstrating its ability to capture richer feature rep-
resentations. Our proposed approach, without token selection,

TABLE III: Performance Overview for RGB-IR Image Fusion.

Model MAE SSIM
RGB Model 0.2000 0.7000
IR Model 0.1614 0.7772
Pixel-Level Fusion Model 0.1018 0.8963
Transformer-Level Fusion 0.0624 0.9752
Ours w/o Token Selection 0.0500 1.0000
Our with Token Selection 0.1012 0.9000

achieves the best accuracy with an MAE of 0.0500 and an
SSIM of 1.0000, showing its effectiveness in preserving image
details. With token selection, the performance slightly declines
to an MAE of 0.1012 and an SSIM of 0.9000, but it offers
better computational efficiency.
Qualitative Results. The qualitative evaluation was conducted
across three different scenarios to assess the performance of
various fusion techniques for RGB-IR object detection. The
results provide valuable insights into how different fusion
methods perform under varying lighting conditions and how
token pruning influences detection accuracy.

In the first example, as shown in Fig. 3, which represents a
daytime scenario, the RGB images already provide sufficient
visual clarity for object detection. Consequently, fusion tech-
niques did not result in significant improvements in detection
performance [69], [70]. The primary reason for this observation
is that under well-lit conditions, RGB data contains rich spatial
and texture details, making the contribution of IR data relatively
redundant. This suggests that multi-modal fusion is most bene-
ficial in challenging scenarios where visibility is compromised
due to adverse environmental conditions.

The second example, as shown in Fig. 4, presents a night-
time scenario characterized by high levels of noise in the
RGB images, making it extremely difficult to detect objects
accurately without the aid of IR data. In this case, fusion
techniques demonstrate substantial improvements in detection
performance. The transformer-based and proposed methods
effectively leverage the complementary features provided by
the IR modality, which compensates for the limitations of RGB
images under low-light conditions. This scenario underscores
the importance of incorporating IR data to enhance object
recognition reliability in environments where RGB images
alone fail to provide meaningful information.

The third example, as shown in Fig. 5, also depicts a
nighttime scenario but with lower noise levels and clearer RGB
and IR images. The results highlight the continued effectiveness
of fusion techniques, particularly the proposed method with
token selection. Despite the pruning of some tokens, the detec-
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(a) (b) (c) (d)
Fig. 3: Visualization of RGB-IR image and object detection of Example 1, Daytime Scenario: (a) Pixel-Level Fusion, (b)
Transformer-Level Fusion, (c) Proposed Method without Token Selection, and (d) Proposed Method with Token Selection.

Fused 
Image

OD

(a) (b) (c) (d)
Fig. 4: Visualization of RGB-IR image and object detection of Example 2, Nighttime Scenario with High-noise: (a) Pixel-Level
Fusion, (b) Transformer-Level Fusion, (c) Proposed Method without Token Selection, and (d) Proposed Method with Token
Selection.

tion performance remains robust, demonstrating that redundant
tokens can be removed without significant loss of accuracy.
This finding suggests that the proposed token selection ap-
proach efficiently balances computational cost and detection
effectiveness, making it suitable for real-time applications.

The proposed method with token selection exhibited high
efficiency by maintaining detection performance while sig-
nificantly reducing computational costs. This indicates that
the token selection mechanism effectively preserves critical
information while eliminating redundant data, achieving a
favorable balance between accuracy and efficiency. The abil-
ity to prune unnecessary tokens while sustaining detection
performance makes this approach particularly valuable for
resource-constrained applications such as real-time monitoring
and autonomous navigation.

C. Limitation Analysis

In the daytime scenario, the fusion methods offered only
marginal improvements, as the RGB modality already con-
tained sufficient visual information to detect objects accurately.
This indicates that in well-lit conditions, the additional contri-
bution of IR data may not justify the computational overhead of
fusion. Thus, an adaptive fusion strategy that dynamically ad-
justs based on environmental conditions could further optimize
resource utilization without compromising detection accuracy.

VII. CONCLUSION

In this paper, we proposed a novel framework for RGB-
IR paired image-based object detection, leveraging multi-modal
fusion techniques to enhance detection accuracy under varying
environmental conditions. Extensive experiments conducted
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Fig. 5: Visualization of RGB-IR image and object detection of Example 3, Nighttime Scenario with Low-noise: (a) Pixel-Level
Fusion, (b) Transformer-Level Fusion, (c) Proposed Method without Token Selection, and (d) Proposed Method with Token
Selection.

on the DroneVehicle dataset demonstrate that while fusion
methods provide marginal improvements in well-lit daytime
conditions, they significantly enhance detection performance in
challenging nighttime scenarios, particularly in the presence of
high noise levels. The proposed method with token selection
achieves a favorable balance between accuracy and computa-
tional efficiency, maintaining robust detection performance even
after pruning redundant tokens. Overall, the proposed frame-
work offers a promising solution for enhancing object detection
in multi-modal scenarios and provides a solid foundation for
future advancements in efficient and robust multi-sensor fusion
techniques.
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