
Modular Approach for Controlling Multi-Agent
Systems with Natural Language

!! DRAFT !! - DO NOT DISTRIBUTE

Christian Brazeau
High Performance Computing (RITB)

Air Force Research Laboratory, Information Directorate
Rome, NY, USA

christian.brazeau@us.af.mil

Abstract—The integration of natural language processing
(NLP) and multiagent systems has the potential to signifi-
cantly enhance human-robot collaboration. A modular pipeline
is proposed that enables control of multiagent systems using
natural language input, designed to be compatible with energy-
efficient edge hardware and suitable for deployment on devices
constrained by size, weight, and power (SWaP). This pipeline
consists of three key components: (1) a large language model
(LLM) to extract relevant information from human input, (2)
a task controller to assign target states to individual agents,
and (3) Cognitive Map Learners (CMLs) that enable agents to
navigate towards their target states by learning representations
of node states and edge actions in an arbitrary bidirectional
graph. The pipeline’s effectiveness is demonstrated in a simulated
environment, where a swarm of ground robots successfully
execute simple natural language commands, such as ”form a
circle around agent 1” or ”form a square in the center”. While
the current implementation focuses on shape-object-preposition
relationships, this work lays the foundation for future research
on more complex natural language inputs and heterogeneous
machine learning systems.

Index Terms—cognitive map, modularization, robotics, natural
language processing, large language models

I. INTRODUCTION

The emergence of robotics and autonomous systems is
fundamentally transforming the manner in which complicated
tasks are executed, affecting a wide range of activities from
search and rescue missions to industrial automation processes.
As these systems become more advanced, the necessity for
flawless interaction between humans and robots becomes
increasingly acute. One of the central challenges in facilitating
smooth interaction involves developing natural interfaces that
overcome the communication divide between humans and
robots and thereby facilitate easy and efficient interactions.
Natural Language Processing (NLP) is another promising
direction, enabling users to give instructions to machines in
ordinary language.

Recent advances in NLP have given rise to large lan-
guage models (LLMs) that can efficiently retrieve pertinent
information from human language, ushering in the era of
higher modalities of human-robot interaction. Concurrently,
multiagent systems have exhibited impressive capabilities to
accomplish complex tasks through the coordinated effort of
numerous autonomous agents. Nevertheless, the marriage of

NLP and multiagent systems encounters substantial techni-
cal challenges, especially in highly constrained environments
where energy consumption and hardware space must be min-
imized.

The growing need for autonomous systems in resource-
limited settings underscores the critical importance of size,
weight, and power (SWaP) constraints in collaborative multia-
gent systems. As these systems find their way into diverse ap-
plications, spanning from unmanned aerial vehicles to ground-
based robots, efficient and compact hardware designs have
emerged as a primary concern. Moreover, cost considerations
are significant, given that these systems are often intended
for widespread deployment. Consequently, there is a pressing
need for solutions that harmonize performance with SWaP
and cost constraints, paving the way for broader adoption of
autonomous systems across various domains. This necessitates
innovative approaches to system design, hardware selection,
and software optimization, all carefully orchestrated to ensure
the effective operation of multiagent collaborative systems in
real-world scenarios.

To address the aforementioned challenges, this paper in-
troduces a modular natural language control pipeline for
multiagent systems. The pipeline is carefully designed to be
edge hardware energy efficient and suitable for devices with
limited SWaP. One of the strengths of the modular system
is that it is flexible to include new tasks and environments
through adapting flexibly and efficiently without requiring full
system retraining. Disaggregation of the system into indepen-
dent, functionally specific modules enables individual module
updating or replacement as needed without degrading the
system’s overall performance. Modular design enables rapid
development and deployment of new functions with minimal
reduction in the time and cost that would typically be required
for large-scale system retraining. The efficiency of the pipeline
is proved in a simulated setup, thus providing a foundation
for further work on more advanced natural language inputs
and heterogeneous machine learning systems. This further
boosts the viability of human-robot collaboration in various
applications.

II. METHODS

The proposed pipeline consists of three primary compo-
nents: a NLP module, a task controller, and an agent control
module. The NLP module utilizes the LLaMA 3.1 [3] language
model with 8B parameters to extract relevant information from
user-provided natural language input. Specifically, the NLP
module extracts the shape, preposition, and object from the
input sentence and outputs a Python dictionary containing
these extracted keywords to the task controller.

The task controller receives the output from the NLP module
and assigns target states to individual agents in the form of
fixed (x, y) positions. The task controller masks out the re-
maining components of the agent’s observation vector, such as
orientation and velocity, and assigns them their current values.
This approach enables the agents to focus on reaching their
target positions while maintaining their current velocity and
orientation. For initial testing, the task controller implements
simple fixed functions for assigning agent positions evenly
spaced along the perimeter of the target shape at a fixed
distance around the target object.

A. Agent Controller (CMLs)

The cognitive map learner (CML) is a system composed
of three interconnected single-layer artificial neural networks
(ANNs), collaboratively trained to encode and utilize bidirec-
tional graphs for navigation tasks [1]. Within this framework,
each node corresponds to a state, and each edge denotes an
action permissible exclusively between two connected nodes.
The bidirectional nature of the graph ensures that all actions
are reversible. The CML is designed to learn three essential
components: internal state representations for each node, the
utility of each action for a given node, and the optimal
sequence of actions to navigate the graph.

The internal state representations of nodes are encoded in
the matrix Wq ∈ Rd×n, where n is the size of the agent’s
observation vector, and d is the dimensionality of the state
representation. The utility values of actions are encoded in
Wv ∈ Rd×e, where e represents the size of the action
space. During initialization, Wq and Wv are randomly drawn
from Gaussian distributions with means of zero and standard
deviations of 0.1 and 1.0, respectively. The dimensionality
d of the state representations is a user-defined parameter,
commonly set to 512 or greater.

In this system, the observation vector ot is derived from an
agent’s observations in a simulated environment, representing
the agent’s current perception of its state. These observations
are encoded in ot, which is a one-hot vector mapping the
agent’s perceived state to a specific node in the graph. The
CML computes the internal state representation of the current
node using

st = Wqot. (1)

Since ot is a one-hot encoded vector, st directly corresponds
to the column of Wq associated with the observed state.

Actions are represented as one-hot vectors at, where each
discrete action available to the agent corresponds to a unique

index in the action space. These actions are derived from
the agent’s decision-making process and define the edges in
the bidirectional graph. Given a selected action at, the CML
predicts the next state representation as

ŝt+1 = st +Wvat. (2)

Unlike previous implementations, training Wk, which en-
codes the set of permissible actions at each state, has been
omitted in this work. Instead, the gating vector gt, which
identifies permissible actions, is computed directly from the
agent’s lidar sensor. This approach leverages the agent’s lo-
cal observations to dynamically determine allowable actions,
simplifying the learning process and improving adaptability to
the environment.

Learning occurs through updates to Wq and Wv using a
delta learning rule. These updates are computed based on
discrepancies between predicted and actual values, weighted
by the inputs’ transposes. The learning rules are defined as
follows:

∆Wv(t) = λv(st+1 − ŝt+1)a
⊤
t , (3)

∆Wq(t) = λq(ŝt+1 − st+1)o
⊤
t+1, (4)

where λv and λq are learning rates, typically set to 0.1. Weight
updates are aggregated at the end of each training epoch.
Regularization is applied to normalize all vectors, ensuring
that Wv is normalized along the e-axis.

Navigation within the graph begins with an agent’s ob-
servation ot, which initializes the current state representation
st = Wqot. A target observation o∗ is chosen, corresponding
to the target state s∗ = Wqo

∗. The utility of each action is
computed as

ut = W⊤
v (s∗ − st), (5)

and the gating vector gt, derived from the lidar sensor,
identifies the permissible actions. Action selection involves an
elementwise multiplication of gt and ut, followed by a winner-
take-all (WTA) mechanism to produce the one-hot action
vector at. Using the selected action at, the next predicted state
ŝt+1 is calculated iteratively. This process enables the CML to
derive an optimal sequence of actions for reaching the target
node from the initial state, even without explicit training for
traversal tasks.

III. EXPERIMENTS

The following experiments were designed to evaluate the
performance and adaptability of the CML in a multi-agent
robotics environment. The setup tested the system’s ability to
learn navigation tasks, handle diverse agent types, and respond
to high-level commands in both autonomous and mixed-
control scenarios. By leveraging a custom environment built on
the Petting Zoo Python library, the experiments explored the
interaction between agents with varying movement capabilities
and the effectiveness of the CML in coordinating their actions.
The results provide insights into the strengths and limitations
of the approach, highlighting its potential for real-world multi-
agent applications.

Fig. 1. System Block Diagram (TEMPORARY, tikz version for final submission)

A. Environment

This custom multi-agent robotics environment, built using
the Petting Zoo Python library, provides a platform for testing
various AI pipelines within a simulated setting. It follows
the Agent Environment Cycle (AEC), where agents take
turns observing the environment and executing actions. The
environment features three distinct agent types with unique
movement capabilities: holonomic agents with full freedom
of motion, tank agents limited to forward/backward movement
and rotation, and bicycle agents that adhere to bicycle kinemat-
ics with acceleration dynamics [I]. This variety in agent types
allows for the exploration of complex multi-agent scenarios
and coordination strategies.

B. Training Agent Controllers

Training was conducted with multiple agents simultane-
ously, all sharing a single replay buffer. This approach exposed
the CML algorithm to a diverse set of observations more
quickly during training, allowing for accelerated learning of
navigation tasks. Agents performed random actions in the
environment, storing observation-action-next observation pairs
in the replay buffer. During training, minibatches of these
experiences were sampled from the replay buffer and used to
update the CML using the delta rules outlined in the methods
section. The paths followed by agents during this phase were
not optimal, nor did the agents need to collaborate to navigate
them. Importantly, lidar-based gating was excluded during
training, ensuring that learning was driven solely by the graph
representation without additional sensory constraints.

While training the CML, the prediction error smoothly
reduced to near zero (as shown in Figure 3), indicating that
the model successfully captured the underlying dynamics of
the environment. However, when measuring the mean distance
of the agents from their targets in an evaluation cycle con-
ducted every N minibatches, the performance was found to be
highly unstable. This instability highlighted the challenges of
generalizing from training data to actual navigation tasks. In-
corporating an early stopping criterion significantly improved
performance, yielding better results compared to training for a
fixed number of timesteps. Early stopping allowed the model

to halt training once the CML could sufficiently solve the
navigation task before it deviated.

C. Full Pipeline

The experimental pipeline began with user input, processed
through a NLP node that extracted relevant keywords. These
keywords were passed to the task controller, which generated
target states for each agent in the swarm. Each agent then
independently attempted to navigate to its assigned target state
within a fixed number of timesteps. This setup demonstrated
the pipeline’s ability to translate high-level user commands
into actionable behavior for individual agents.

A player-controlled mode was also implemented to assess
the swarm’s robustness and adaptability. In this mode, the
user controlled one agent directly while the remaining agents
operated autonomously. The goal was to evaluate whether the
swarm could maintain its formation and execute its tasks effec-
tively despite dynamic and unpredictable changes introduced
by the player-controlled agent. This mode provided valuable
insights into the ability of the CML to handle mixed control
schemes and real-time adjustments in a multi-agent system.

TABLE I
AGENT TYPES AND PROPERTIES

Agent Type Observation Space Action Space

Holonomic Position (x, y)
Velocity (vx, vy)

Up, Down,
Left, Right

Tank

Position (x, y)
Orientation (θ)
Linear Velocity
Angular Velocity

Forward, Backward,
Rotate Left, Rotate Right

Bicycle

Position (x, y)
Orientation (θ)
Steering Angle
Linear Velocity
Angular Velocity

Forward, Backward,
and 4 steering angles

IV. RESULTS

The empirical analysis of the NLP module shows that it is
fairly robust to different phrasing, spelling errors, and other
input inconsistencies, demonstrating a very high success rate
in extracting the intended keywords.

Fig. 2. Paths created during a single episode of the trained CML navigating
the agents from their starting locations indicated by squares, to their target
locations (stars). Instruction: ”Form a circle”

For the agent controllers, the holonomic agents performed
efficiently without lidar gating, quickly converging to a solu-
tion that allows them to reliably reach their target positions.
This is evidenced by the prediction error decreasing during
training (figure 2). However, with lidar gating, agents occa-
sionally get “stuck” and are unable to make progress toward
their target states, as shown in an environment visualization
where some agents remain stationary and in a figure plotting
the paths of 10 agents from their starting to target locations
during an episode.

The agent controllers for the tank and bicycle agents were
unable to converge to a functional model despite a reduction
in prediction error over time. The tank controller would fre-
quently get stuck spinning in place, while the bicycle controller
would oscillate back and forth, continuously adjusting its
steering angle. Further research is required to determine the
underlying reasons for these behaviors.

Finally, measuring the distance between agents and their
targets at the end of each episode during training reveals
that the training process is highly unstable. Early stopping
is necessary to halt the CML training before it deviates
significantly.

V. DISCUSSION

This study presents a modular pipeline for controlling
multiagent systems using natural language, highlighting a mix
of successes and limitations that provide a clear direction for
future development. While the system demonstrates promising
capabilities in certain areas, it also faces challenges that need
to be addressed to realize its full potential.

One of the system’s key strengths is the robustness of
the NLP module. It exhibits a high degree of accuracy
in extracting relevant keywords from user input, effectively
handling variations in phrasing, spelling errors, and other
inconsistencies. This robustness is crucial for bridging the
communication gap between humans and robots, enabling

Fig. 3. CML prediction error smoothly reducing to near zero during training
(no early stopping)

Fig. 4. Agents attempting to form a circle but some agents are not able to
find find a path to their target locations

natural and intuitive interaction. However, the current imple-
mentation relies on a LLM, which may be computationally
excessive for the relatively straightforward task of keyword
extraction. Exploring alternative, lightweight approaches such
as vector symbolic architectures (VSAs) or other methods
that leverage hyperdimensional computing could reduce com-
putational demands without compromising performance. This
could prove particularly beneficial for deployment on resource-
constrained edge devices.

The holonomic agent controllers also demonstrated promis-
ing results, particularly in scenarios without lidar gating.
These controllers reliably converged to solutions that allowed
agents to efficiently reach their target positions. This success
highlights the effectiveness of the CML approach in enabling
agents to learn representations of their environment and plan
optimal paths. However, the performance of the holonomic
agents degraded when lidar gating was introduced, with some
agents getting ”stuck” and unable to progress (figure (figure
4). This suggests that the integration of sensory information,
such as lidar data, needs further refinement to ensure that
it enhances rather than hinders navigation performance. Ex-
ploring methods for fusing lidar data with the CML’s internal

representations could lead to more robust and adaptable agent
behavior.

In contrast, the agent controllers for the tank and bicycle
agents faced significant challenges, failing to converge to
functional models. The tank controllers frequently became
stuck spinning in place, while the bicycle controllers exhib-
ited oscillatory behavior, continuously adjusting their steering
angle without stabilizing. These issues indicate that the cur-
rent CML implementation may not be well-suited for agents
with non-holonomic constraints. Further research is needed
to understand the underlying reasons for these behaviors and
to develop strategies for adapting the CML to accommodate
the complexities of non-holonomic motion. This could involve
exploring alternative state and action representations, modify-
ing the learning algorithm, or incorporating techniques from
control theory to better handle the dynamics of these agent
types.

Another area of concern is the instability of CML training
in dynamic environments, which necessitates early stopping to
prevent significant performance degradation. This instability
suggests that the current implementation of CML may not be
sufficiently adaptable to changing conditions. Investigating the
reasons behind this instability and exploring ways to enhance
CML’s adaptability and robustness will be crucial for future
development. One potential avenue is to explore modular and
hierarchical implementations of CML, which could allow for
more localized learning and adaptation. Additionally, integrat-
ing hyperdimensional computing (HDC) principles, as sug-
gested in recent literature [4], [5], may enhance the scalability
and robustness of the CML in more complex environments.

The task controller also requires significant development
to better handle dynamic and complex task environments.
The current implementation relies on simple, fixed functions
for assigning agent positions, which limits its flexibility and
applicability to a wider range of scenarios. Developing a more
sophisticated task controller capable of interpreting complex
instructions, decomposing them into subtasks, and dynami-
cally assigning roles to agents would greatly enhance the
system’s overall capabilities. This could involve incorporating
techniques from hierarchical planning, task allocation, and
multi-agent coordination to enable the system to handle more
intricate and dynamic tasks.

VI. CONCLUSION

This work, while still a work in progress, provides valuable
insights into the strengths and weaknesses of the current sys-
tem. The results indicate several promising areas for continued
research.

Future work should focus on modular and hierarchical
implementations of CMLs, potentially integrating HDC as
suggested in recent literature. These approaches may enhance
scalability and robustness in more complex environments.
Expanding the system to accommodate more intricate instruc-
tions, sequential tasks, and improved collaboration among
agents is another key avenue for exploration. Efforts to remove

hard-coded components will also be essential to achieve a
more generalizable system architecture.

Addressing the limitations outlined in this study will require
careful evaluation of alternative methods for task control,
keyword extraction, and agent training. Comparative analysis
with other deep reinforcement learning (Deep RL) and deep
multi-agent reinforcement learning (Deep MARL) methods is
also necessary to identify areas of improvement and validate
the system’s performance.

In conclusion, while this study demonstrates substantial
progress in several aspects, significant challenges remain.
Continued research and development will be essential to fully
unlock the potential of this system and address its current
limitations.

ACKNOWLEDGMENT

Any opinions, findings and conclusions, or recommenda-
tions expressed in this material are those of the authors, and
do not necessarily reflect the views of the US Government,
the Department of Defense, or the Air Force Research Lab.

REFERENCES

[1] C. Stöckl, Y. Yang, and W. Maass, “Local prediction-learning in high-
dimensional spaces enables neural networks to plan”, Nat Commun 15,
2344 (2024). https://doi.org/10.1038/s41467-024-46586-0

[2] I. Polykretis and A. Danielescu, “Mapless mobile robot navi-
gation at the edge using self-supervised cognitive map learn-
ers,” Frontiers in Robotics and AI, vol. 11, p. 1372375, 2024.
https://doi.org/10.3389/frobt.2024.1372375

[3] A. Grattafiori et al., “The llama 3 herd of models,” arXiv preprint
arXiv:2407.21783, 2024.

[4] N. McDonald, “Modularizing and assembling cognitive map learners via
hyperdimensional computing,” arXiv preprint arXiv:2304.04734, 2023.

[5] N. McDonald and A. Dematteo, “Assembling modular, hierarchical cog-
nitive map learners with hyperdimensional computing,” arXiv preprint
arXiv:2404.19051, 2024.

