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Abstract—In response to the growing demand of authenti-
cating wireless devices in a large pool of internet of things
(IoT) network, a convolutional neural network (CNN) has
proposed to identify Wi-Fi transmitters based on their radio
frequency (RF) fingerprints — raw in-phase and quadrature
(I/Q) components — with decent accuracy. Meanwhile, the in-
memory operator using memristor crossbar array for analog
vector-matrix multiplication (VMM) has demonstrated its high
energy efficiency and small form factor when implemented
deep learning models liked CNN. In this work, we showcase
a compressed CNN using average pooling methodology to
reduce model parameters and required hardware resources
for the inference operation. Specifically, by linearizing pooling
layers with averaging approach, trained convolutional and
pooling layers can be integrated into one single matrix — via
matrix-matrix multiplication — which can be realized by a
memristor crossbar array for efficient and rapid inference
operation. Prototype and proof-of-concept demo were made
for authentication of Wi-Fi transmitters based upon their raw
RF fingerprints. With merely 2 crossbar arrays made of 3-bit
memristors alongside the temporal encoding mode, our model
demonstrates 91% accuracy, making such a neural network
a good candidate when implemented in power-limited mobile
edge devices.

Index Terms—compressed convolutional neural network, av-
eraging pooling, in-memory computing, memristor, radio fre-
quency fingerprints.

1. Introduction

Internet of Things (IoT) network has immense potential
for a variety of applications, such as medical diagnosis,
environmental monitoring, smart cities, etc. [1]. Accord-
ingly, authenticating IoT devices becomes a critical measure
to ensure the security of large IoT deployment [2]. In
this manner, radio frequency (RF) fingerprints of wireless
transmitters can be used as an identification feature, as each
has unique circuit artifacts.

State-of-the-art literature has demonstrated the success
of convolutional neural networks (CNNs) in authenticat-
ing Wi-Fi transmitters based on their RF fingerprints by

efficiently capturing spatial features within signals [3]. In
addition to CNNs, recurrent neural networks (RNNSs) [4] and
their variants, including long short-term memory (LSTM)
[5] and gated recurrent units (GRUs) [6], are well suited
for processing the sequential nature of RF signals, en-
abling them to handle temporal dependencies over time.
Afterward, the echo state network (ESN), a specialized
RNN, also shows promise in authenticating RF signal by
utilizing a sparsely connected reservoir with fixed internal
states to enable efficient processing of temporal dynamics
while significantly simplifying the training operation [7]-
[9]. However, as large-scale IoT deployments require rapid
and efficient inference, it becomes important to consider
architectures that strike a balance between computational
efficiency and accuracy.

In recent years, in-memory computing (IMC) interfac-
ing with the resistive random-access memory (RRAM) has
demonstrated its high energy efficiency and small form
factor when building deep learning models [10]. Benefited
by the ohmic and parallel natures of RRAM crossbar array,
vector-matrix multiplication (VMM) is executed in analog
domain instantaneously without the limitation of memory
wall, and yet, the architecture of analog VMM could be
challenging in implementing CNN directly [11].

In this work, a pre-trained CNN is simplified and com-
pressed for VMM operations by leveraging the linear char-
acteristics of convolution and pooling. When implemented
in inference, fewer VMM operations are needed to accom-
plish cognitive tasks, e.g., authentication of RF signals. In
short, our compressed CNN significantly reduces the model
size and computational latency while increasing the energy
efficiency, making such a model a good candidate to be
widely deployed for edge computing.

2. Compressed CNN with Average Pooling

In this experiment, RF fingerprints were extracted from
raw in-phase and quadrature (I/Q) components of 16 Wi-Fi
transmitters with a sampling frequency of 5 MS/s as de-
picted in [3], in which 128 pairs of 1Q samples were used at
a time to differentiate 16 transmitters. A conventional CNN,
as illustrated in Fig. 1, has performed well to identify RF
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Figure 1. An overview of combining convolutions and average pooling into a single VMM operation.
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99% when tested with 16 transmitters.

To further simplified the trained CNN for efficiency, the
matrix convolution was first turned into a series of two-
dimensional (2D) VMM and then integrated into a single
matrix using the associative properties of linear operation.
Thereby, when used in inference, only VMM operations are
needed. Detailed compression method with the RF identifi-
cation task is discussed in the following.

Fig. 2 demonstrates the conversion from matrix convo-
Iution into 2D VMM. To be specific, inputs with separated
I and Q channels are first reshaped into a [1 x 256] row
vector while each [1 x 7] convolutional filter is turned into
a column vector. This column vector is then placed based
on the spatial locations of input elements for each sliding
window within the matrix convolution. To better support
the computation, zeros are filled into the filter vector as
weight values in convolutional filters stair down as depicted
in Fig. 2. By doing so, the number of column is calculated
as 2- (128 — 7+ 1), and thus, the convolution with one filter
results in a 2D VMM between a row vector of [1 x 256] and
a weight matrix of [256 x 244]. To accommodate multiple
output channels, weight matrices of individual convolutional
filter can be concatenated horizontally. With 64 [1 x 7]
convolutional filters, the size of weight matrix is expanded
to [256 x 15,616].

The second convolutional layer contains 64 [2 x 7] filters
for concatenated features. As denoted in Fig. 3, each input
row vector is [1 x 15,616] from the previous layer, while
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Figure 2. Convolution with 2D VMM featuring multiple output channels.

each convolutional filter has matrix size of [244 x 116],
where the number of columns is calculated as (122—741).
With a similar strategy when accommodating more out-
put channels, multiple input vectors can be concatenated
vertically while weight matrices are concatenated horizon-
tally, and thus, the resulting weight matrix has a shape of
[15,616 x 7,424].

Organizing the weight matrix is essential to ensure
the alignment between inputs and outputs across layers,
in which each row of the weight matrix must correspond
to its corresponding input and is filled systematically. To
be specific, the weight matrix is initialized hierarchically,
processing each filter for input channels followed by the
output one. Reshaping is applied to input and output chan-
nels separately to ensure proper alignment. Such a method
guarantees the reshaping process for input channels does not
interfere with that of the output one.

Afterward, an average pooling layer with a stride of 2 is
applied to calculate the average value of 2 adjacent columns
of preceding convolutional layer in groups, and thus, the



1+ 122 -7+1)/2

W, 0. 0
I Wli 0
e Hws s iw |Fa22
2 wi+0)/2 10 g W
we owil L wetw)/2 |0 o 0w, |
. d e 0
0wy O+wi)/2 | 3|+ Wi 0
[01 02] [(o, +0)/2] | EWM P W 122
""""""" ST |0 Wi i
Average Pooling 1o 0 Wi,

Weights per filter
N

'
H Output size per filter B
'

: Depth (height * width) Average Pooling
H +

I

| 64 * (1 * (12|2 -7+1))/2

Input size per channel r T 1
height * width) [ F=r====7 e
(height " width) { Channel 1, Depth 1|

Channels
Channel 1, Depth 64

B

Inputs

Channel 64, Depth 1 Channel 64, Depth 64

Weights

Figure 3. Convolution with 2D layer featuring multiple input channels and
pooling.

size of resulting weight matrix is reduced by half as of
[15,616 x 3, 712]. Until here, only linear operation is used to
convert matrix convolution into VMMs and reduce the size
of resulting outcome. In the inference operation, the entire
convolution alongside the subsequent average pooling and
flatten layer (with 256 neurons in this experiment) can be
compressed into a single matrix, in the size of [256 x 256],
using the associative properties of linear operation. For
instance:

o Matrix-matrix multiplication between two convolu-
tional layers is calculated as [256x 15, 616][15, 616 x
7,424) = [256 x 7,424],

o Size reduction through the average pooling as of
[256 x 3,712],

o Matrix-matrix multiplication between preceding and
flatten layer is calculated as [256 x 3,712][3, 712 x
256] = [256 x 256].

Together with a FC classifier, the entire inference op-
eration is compressed into two VMMs — [256 x 256] and
[256 x 16] — with a nonlinear activation to authenticate 16 RF
signals. Such a compression methodology dramatically re-
duces the model size, required hardware resources, compu-
tational latency, and power consumption when implemented
in edge devices.

3. Circuit & System Implementation

RRAM crossbar array for IMC promises an energy-
efficient and compact analog VMM, in a way by leveraging
Ohm’s Law to execute operations [12]. By compressing
the CNN inference operation with the aforementioned al-
gorithm, the process of building the neural network onto
RRAM crossbar array becomes significantly more efficient
and unambiguous. Here, to differentiate 16 RF signals, 2
RRAM crossbar arrays of sizes 256 x 256 and 256 x 16 were
used to build up our compressed CNN. To further reduce
power consumption, input tensors and weight values were
quantized into 4-bit and 3-bit, respectively.
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Figure 4. An overview of analog VMM operator using RRAM crossbar
array with PWM signal as computing variables. MUX and DFF at each
WL are to cover digital inputs into PWM signals. Current integrator and
comparator at each BL are to cover the resulted analog current back to
PWM signals for the following stage. A single DLL and sawtooth waveform
generator are shared by the entire system for efficiency.

In this system, the computing variable is represented by
the duty cycle of constant-amplitude pulses at a fixed clock
frequency [13]. As showcased in Fig. 4, the accumulated
current at each bit-line (BL) produces the weighted sum by
multiplying an array of input pulse-width modulated (PWM)
signals and their corresponding memristor’s conductance,
which is then normalized and integrated over a clock period
via a capacitor by a current amplifier (served as a sample and
hold, S/H). This sampled voltage is eventually compared to
a reference signal made by the global saw-tooth waveform
generator, and the duty cycle of comparator’s output pulses
is proportional to the VMM result.

3.1. Write Circuitry

The write circuitry consists of local and global modules:
(1) a selector made of multiplexer (MUX) and a phase
detector (PD) made of D-type flip flops (DFFs) as the local
circuit at each word-line (WL) that interfaces with the digital
input, and (2) a global delay locked loop (DLL) shared by
all WLs with a set of 15 delayed clocks [13].

As depict in Fig. 5, the selector picks 1 of the 15
equally delayed clocks in according to the quantized 4-
bit digital input from the select-line (SL). By comparing
the delayed clock and the master reference clock via PD,
the time period between individual rising edge of separated
signals are measured, turning the digital input into an analog
PWM signal.



PWM OQutput

Ref. CLK o—1

N

Delay CLK 1
Delay CLK 2

Delay CLK 3

Delay CLK n

Select Lines

Figure 5. Simplify schematic of write circuitry.

3.2. RRAM with Bi-directional Current

Here, individual RRAM is made to encode either posi-
tive or negative weight values, in a way by controlling the
direction of current flow through the RRAM [14], removing
the necessity and power/area overhead from peripherals. As
illustrated in Fig. 6, the RRAM is designated as positive
weight when the reference voltage, Vi, is enabled and set
to be 400 mV while the voltage at BL is pinned at 200 mV.
By contrast, the RRAM is designated as negative weight
when Vi is disenabled while V; is pinned to ground. In
short, a forward-biased current through the RRAM reads a
positive weight value while a reverse-biased current reads
a negative one. For other RRAMs that are read as zero,
both Vy and V, are disenabled for power efficiency and to
eliminate sneak paths [15]. By doing so, currents resulted
by either positive or negative weight values from each
individual RRAM subtract each other along the BL, such
that Iiotar = X(Ipositive) =2 (Inegative ), and thus, individual
RRAM, rather than a pair of 1-transistor-1-RRAM (1T1R)
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Figure 6. Illustration of RRAM with either positive or negative weight
value in terms of current direction.
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Figure 7. Circuit implementation of (a) current amplifier and S/H, and (b)
op-amp used in current amplifier.

with current subtractor, can be deployed to support the
computation of deep learning workloads.

3.3. Read Circuitry

The read circuitry also consists of local and global
modules: (1) a current amplifier and a comparator at each BL
as the local circuit, and (2) a sawtooth waveform generator
shared by all BLs as the global circuit.

The design methodology of current amplifier is depicted
in Fig. 7(a). Transistors M7 and My form a current mirror
with 120 pA static current. The operational amplifier (op-
amp) pins the potential of BL at a fixed voltage in according
to Vrer (e.g, 400 mV in this design). The accumulated
current from BL and the static current are then integrated
and mirrored by transistors M5 to Mg. Once the current
mirror is balanced, accumulated current from BL is dupli-
cated to M7, and then scaled down by a factor that equals to
the number of WLs. Such a normalized current eventually
charges up a sensing capacitor, C7, over 200 ns, in which
the resultant voltage at C'; is proportional to the VMM from
the corresponding BL and turned into PWM signals for the
next stage by comparing to a sawtooth waveform.

To force the driving voltage of M5 and My is pinned
to Vicr, the op-amp used current amplifier is made of
two supplemental single-stage folded cascode op-amps, as
showcased in Fig. 7(b). As they share the same V¢,
supplemental op-amps can be integrated in the layout for
area efficiency.

4. Experimental Results

The mathematical model of our compressed CNN was
first simulated in software and the performance metrics



TABLE 1. COMPARISON ON RF AUTHENTICATION WITH THE STATE-OF-THE-ART CNN MODELS

This Work
(3] L16] (7 18] Baseline [ Combined
Input Size 2x256 2x128
Conv. 128x[3x3]
S com: 21823[)(1[,(1;7] MaxPool Conv. 50x1x7] | 0% SO cony. gax(1x7)
o MaxPool 5x Conv. 256x[3x3] | Conv. 50x[2x7] ConvaSO)(()E)2x3] Conv. 64x[2x7] VMM [256x256]

Structure Dense (256) MaxPool Dense (256) MaxPool AvgPool Dense (16)

Dense (64) Dense (256) Dense (80) Dense (256) Dense (256) ’

D Dense (64) Dense (16) Dense (16)

ense (16) Dense (17) Dense (4)

# of Classes 16 17 16 4 16
# of Parameters 1,102,096 2,936,721 1,542,362 400,534 1,012,160 69,120
# of MACs 111,566,383 109,102,144 5,651,960 1,337,824 7,715,584 69,120
Accuracy 98.70% 93.40% 96.00% 98.00% 99.20% 99.20%

are summarized in Table 1. The number of parameters
and multiple-and-accumulate (MAC) operations were cal-
culated with PyTorch-OpCounter [19]. It can be observed
that our compressed CNN achieves significant reduction
in model parameters and required MAC operations, with
14.64x and 111.63x improvement respectively as compared
to our baseline model while maintaining an identical ac-
curacy of 99.20%. As compared to the next-best model
from the state-of-the-art, our compressed CNN offers up
to 15.94x and 1614.10x reduction on model parameters and
MAC operations respectively.

Our model was then simulated in hardware using two
RRAM crossbar arrays in the Cadence Virtuoso platform
with a custom 65 nm CMOS/RRAM technology node,
sizing with 256 x 256 and 256 x 16. The resistance of each
RRAM was quantized into 3-bit, ranging from 10 k{2 to
25 kQ with a high impedance state at 150 k2 [20]. The
simulated system also included dedicated registers to control
the direction of current flow at each RRAM. The reference
voltage at each BL was pinned at 200 mV while the current
reduction factor of the read circuitry was set according to the
number of WLs, i.e., 256 for both layers. The supply voltage
was kept at 1.2 V and the frequency for input quantization
was fixed at 50 MHz. With 8,000 RF data streams, our
hardware model achieved an overall accuracy of 91.60%,
yielding 7.6 percentage points reduction as compared to our
software model.

5. Conclusion

In this work, we showcase a compressed CNN to authen-
ticate wireless transmitters based on their RF fingerprints —
down-converted IQ components. In our model, an average
pooling, instead of the conventional max pooling, is used
without nonlinear activation in between. Such a linearized
CNN can be compressed into simple VMMs by the linear
associative law. In addition to the model compression, we
also demonstrate the high computational efficiency when
implemented with IMC technology using RRAM crossbar
arrays. With the introduced fully analog circuitry, the RRAM
crossbar array has efficiently performed analog VMM using

PWM signals, offloading the necessity of power-hungry data
conversion between analog and digital. When tested with RF
data streams, our software model demonstrates as high as
15.94x and 1614.10x reduction on model parameters and
required MAC operations respectively. When simulated in
hardware, our prototype expresses a reasonable accuracy of
91.6% even with aggressive quantization. Our methodology
highlights that the linearized and compressed CNN with
fully analog RRAM crossbar arrays can be easily deployed
in resource-constrained environments, such as IoT networks
and edge platforms, to efficiently perform artificial intelli-
gence and machine learning workloads.
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