An Automatic and Efficient BERT Pruning for Edge AI Systems

Shaoyi Huang1, Ning Liu2, Yueying Liang1, Hongwu Peng1, Hongjia Li2, Dongkuan Xu3, Mimi Xie4, Caiwen Ding1
1University of Connecticut, 2Northeastern University, 3The Pennsylvania State University, 4The University of Texas at San Antonio


Abstract

With the yearning for deep learning democratization, there are increasing demands to implement Transformer-based natural language processing (NLP) models on resource-constrained devices for low-latency and high accuracy. Existing BERT pruning methods require domain experts to heuristically handcraft hyperparameters to strike a balance among model size, latency, and accuracy. In this work, we propose AE-BERT, an automatic and efficient BERT pruning framework with efficient evaluation to select a ”good” sub-network candidate (with high accuracy) given the overall pruning ratio constraints. Our proposed method requires no human experts experience and achieves a better accuracy performance on many NLP tasks. Our experimental results on General Language Understanding Evaluation (GLUE) benchmark show that AE-BERT outperforms the state-of-the-art (SOTA) hand-crafted pruning methods on BERT. On QNLI and RTE, we obtain 75% and 42.8% more overall pruning ratio while achieving higher accuracy. On MRPC, we obtain a 4.6 higher score than the SOTA at the same overall pruning ratio of 0.5. On STS-B, we can achieve a 40% higher pruning ratio with a very small loss in Spearman correlation compared to SOTA hand-crafted pruning methods. Experimental results also show that after model compression, the inference time of a single BERTBASE encoder on Xilinx Alveo U200 FPGA board has a 1.83× speedup compared to Intel(R) Xeon(R) Gold 5218 (2.30GHz) CPU, which shows the reasonableness of deploying the proposed method generated sub-networks of BERTBASE model on computation restricted devices.