

Trends and Opportunities for SRAM Based In-Memory and Near-Memory

Computation
Srivatsa Srinivasa1, Akshay Krishna Ramanathan2, Jainaveen Sundaram1, Dileep Kurian1,

Srinivasan Gopal1, Nilesh Jain1, Anuradha Srinivasan1, Ravi Iyer1, Vijaykrishnan Narayanan2 and

Tanay Karnik1
1 Intel Corporation 2 The Pennsylvania State University.

Abstract
 Changes in application trends along with increasing

number of connected devices have led to explosion in the

amount of data being generated every single day. Computing

systems need to efficiently process these huge amounts of

data and generate results, classify objects, stream high

quality videos and so on. In-Memory Computing and Near-

Memory Computing have been emerged as the popular

design choices to address the challenges in executing the

above-mentioned tasks. Through In-Memory Computing,

SRAM Banks can be repurposed as compute engines while

performing Bulk Boolean operations. Near-Memory

techniques have shown promise in improving the

performance of Machine learning tasks. By carefully

understanding the design we describe the opportunities

towards amalgamating both these design techniques for

obtaining further performance enhancement and achieving

lower power budget while executing fundamental Machine

Learning primitives. In this work, we take the example of

Sparse Matrix Multiplication, and design an I-NMC

accelerator which speeds up the index handling by 10x-60x

and 10x-70x energy efficiency based on the workload

dimensions as compared with non I-NMC solution

occupying just 1% of the overall hardware area.

Keywords
In-Memory Computation, Near-memory Computation,

SRAM

1. Introduction
 With the increasing data centric nature of present-day

application domains like AI, graph analytics etc., speed of

execution and energy efficiency challenges have become

utmost importance metrics. Current computing techniques

limits performance and spend huge amount of energy in

executing these data centric tasks. Traditional systems

require huge amount data to be transferred from a memory

system to the processing elements (PEs) through a very

narrow and parasitic channel resulting in a performance

bottleneck. Increase in overall compute capacity with

additional hardware and PEs will become redundant if the

channel BW is not able to provide the required data at the

right time. While memories rely on capacity aware design

(packing more bits on chip), PEs favor performance aware

design. Capacity centric design makes the memories slower,

bulkier and performance centric design makes the PEs more

complex, area inefficient and power hungry.

 Blurring the ever-growing logic-memory performance

gap (due to contrasting design requirements) has led to

revisiting the already existing design strategies and look for

alternate and yet promising solutions. Multiple published

works from the literature emphasize on various caching and

tagging strategies for addressing the performance gap in

processors [1,2]. GPUs have been shown to accelerate the

performance of many data centric workloads, at the cost of

high-power consumption. FPGAs are capable of providing a

high degree of parallelism but running at reduced clock

frequencies and thereby compromising on the speed of

AI/ML execution.

 Another class of design solution gaining wide popularity

is to compute wherever the data resides or by designing PEs

near the memory system. Subcategories in this class are In-

Memory Computing (IMC) and Near Memory Computing

(NMC). In this paper, we term IMC for those techniques

which manipulate data as part of memory access without

needing a conventional hardware. We term those techniques

as NMC, which require a standard hardware integrated at the

periphery of memory system with wide direct access to the

memory. Advantages of IMC and NMC are attributed to two

main design principles of the memory system, a) hierarchical

organization into Banks and sub-arrays and b) Huge

Bandwidth (BW) internal to the system. Hierarchical

organization provides massive computation parallelism

while high internal BW minimizes the data movement. By

taking advantage of these two properties effectively, IMC

and NMC techniques provide higher performance at a

fraction of power budget.

 The compute centric to memory centric design evolution

through IMC and NMC are further fueled by unique

properties (non-volatility, crossbar architecture, high density

etc..) of emerging memory technologies [3-5] (FeFET, STT-

MRAM, PCM etc..) and developments in 3D integration

process (HBM, HMC, sequential 3D integration etc..).

However, high write latency, low endurance and operations

susceptible to variations at low voltage make these emerging

memories not suitable candidates to replace on chip SRAM

memories in the near future.

 Hence numerous solutions have been proposed to enable

IMC and NMC with SRAM as the target memory system.

Most of the IMC solutions propose to minimally alter the

SRAM cell and read technique to perform computation

without drastically affecting the memory density. Some

solutions make use of monolithic 3D integration [6] to

enhance the computation capability of SRAM. However,

IMC cannot perform all the fundamental and performance

critical tasks as part of data readout. Hence NMC technique

or combination of IMC and NMC will bring accelerated

performance to many application categories. This paper

describes the trends and opportunities for SRAM based IMC

and NMC techniques. As an example, we will also describe

effectiveness of combining IMC and NMC while designing

hardware for Sparse Matrix Multiplication (SpGeMM).

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 547 22nd Int'l Symposium on Quality Electronic Design

2. Background

2.1 IMC and NMC: Classification
 Figure 1 illustrates memory organization and the channel

connectivity to PEs with IMC and NMC designs. Primary

characteristic of IMC designs (Figure 1(a)), is to avoid data

traversal to low BW channel. Minimal modifications to the

bit-cells, Peripherals like Decoder and Sense circuits are

carried out in order to perform computation as part of data

read out. Therefore, only a handful of computations are

possible with this technique without compromising the

memory properties like access speed and density.

 On the other hand, PEs can directly access the High BW

memory channel in case of NMC (fig. 1(b)). Even though

PEs are responsible for overall computation, data mapping

within the memory arrays is crucial for performance. Several

studies show promise with NMC designs [7] making use of

IMC to prepare the initial data for computations in PEs.

Subsequent sections describe more about this strategy.

 2.2 Performance metrics
 Parallelism, computation cycles and area of additional

logic (apart from memory) are the three basic metrics which

can determine whether IMC or NMC is suitable for a

particular task. For example, IMC solutions are best if

implementing only Boolean logic, because of minimal

changes to memory design and single cycle execution.

However, for complex operation (like Multiplication), a

formal definition of a metric is necessary to develop a best

design strategy. Processing-in-Memory Operations per cycle

(PIM_OPC) was introduced [7] for this purpose. PIM_OPC

is an indicator of the degree of compute parallelism

supported by the memory. For example, considering column

multiplexing of 4:1, for the memory in Figure 2, 8 Boolean

operations (8-bit operands and bit-parallel computing) per

cycle are possible in one PIM cycle without transferring the

data to PEs outside the memory. Hence PIM_OPC in this

case is 8 considering all 64 bitlines computing in parallel.

Higher PIM_OPC suggests higher parallelism and faster

computation. Two ways of improving the PIM_OPC are a)

increasing the computation parallelism and b) reducing

compute cycles. We discuss this in detail for different IMC

designs in the subsequent section to describe the IMC

compatibility and/or need for NMC based solution.

3. Trends and opportunities: IMC
 Since caches occupy significant real estate of the

processor and IMC transforms the memory into thousands of

in-memory accelerators, IMC techniques achieve

performance much higher than CPU and GPU running bulk

Boolean tasks. IMC in SRAM based processors are

categorized into bitline computing which perform

computation as part of data discharge pattern. Fu-Kuo Hsueh

et al. [8] show Boolean operations as part of data readout

with a specialized 9T SRAM. S.Aga et al.[9] proposed

compute caches which repurpose the cache for

computational purposes. Boolean operations are performed

using multi row activation technique. Slow compute time as

compared to data access as a measure to retain the memory

robustness. Therefore PIM_OPC is slightly lower.

Configurable SRAM cells using Monolithic 3D (M3D)

integration process help shorten the cycle time and thereby

reducing the denominator if PIM_OPC calculation. Work

from Srinivasa et al. [10] show that the PIM_OPC can be

increased up to 44% with specialized M3D SRAM cell.
 In-memory addition can be performed through bitline

computing by repeatedly computing the fundamental

Boolean operations which are part of addition. This leads to

activating the bitlines multiple times and hence increases the

compute cycle (Proportional to bitline charging-discharging

count). In-Memory addition operation can be broken down

into three fundamental operations: a) Bit level SUM

calculation b) Bit level CARRY computation and c) CARRY

propagation through memory columns. While direct IMC

technique can be applied for first two operations, serial

CARRY propagation requires multiple cycles. This suggests

that wider data requires more compute cycles.

Figure 1: Illustration of the memory organization in (a) In-

Memory computing design. (b) Near-Memory computing

design

Figure 2: Illustration of PIM_OPC for IMC Boolean

operation

For example,

PIM_OPC (32-bit,64 additions in parallel) =64/32→ 2

PIM_OPC (64-bit,64 additions in parallel) =64/64→ 1

 In-memory addition with data wider than 64 bit brings the

PIM_OPC to less than 1. However, only benefit through

IMC is by offloading numerous such operations to every

array of the SRAM memory and increasing the overall

throughput. Moreover, having dedicated adder hardware

near memory enables fast NMC at the cost of additional area.

This discussion can be further extended to multiplication

operations (fundamental ML computation).
 Neural cache [11] and Duality cache [12] run neural

networks on repurposed caches using multi row activation

and bit serial computing. Both the designs achieve

performance much higher than CPU and GPU running the

same application. NMC techniques discussed in the next

section overcome poor PIM_OPC for multiplication

operations thorough NMC.

 Jintao Zhang et al. [13] proposed multi row activation-

based IMC for linear classification by multiplications using

bitline current summation technique. This technique requires

building Digital to Analog converters (DAC) and current

sense amplifiers within the memory and thereby making the

resultant system less dense and less robust.
 While IMC shows clear benefit over CPU and GPUs

while computing Boolean, arithmetic, Multiplication and

classification tasks, we can clearly observe that PIM_OPC

can be further improved either by NMC and/or combination

of IMC and NMC techniques. Next section discusses the

opportunities for improved performance while computing

these tasks through NMC techniques.

4. Trends and opportunities: NMC
 NMC systems perform better compared to IMC involving

serial propagation and multiple cycle requirement (addition

and multiplication operations which need carry propagation)

mainly due to design flexibility. For example, the

multiplication needs to be broken down into multiple

additions and in turn the addition operation need to be

broken down into multiple Boolean operations.
 Many NMC technique-based accelerators have been

proposed to run neural network applications efficiently.

Eyeriss [14] maximizes re-use of the inputs and minimizes

the partial sum reduction costs with systolic dataflow. Y.

Chen et.al., [15] proposed a neural network supercomputer

which maps specialized logic of the DNNs to multiple

chips/nodes which are tightly intercoupled for optimizing

data movement. Similarly, Simba [16] maps these operations

onto multiple smaller chiplets in distributed fashion. These

accelerators incur high H-tree interconnect bus penalties

while fetching the data from the cache.
 To avoid interconnect bus penalties, many works [7,17]

have focused onto building systems which amalgamates
IMC and NMC techniques. This kind of system avoids the

interconnect penalties by placing the compute units close to

each smallest memory unit in a SRAM memory. We

categorize this type of technique as In-near memory compute

(I-NMC). A.K. Ramanathan et.al.,[7] have proposed

systems incorporating I-NMC technique by placing

specialized compute units near SRAM arrays.
 Also, the I-NMC technique greatly benefits in terms of

energy since the data is once read-out of the SRAM array

and then computed with minimal logic energy consumption.

Whereas using IMC technique, the bitlines need to be

charged and discharged repetitively when computing. The

bitlines are high parasitic lines connecting to the SRAM cells

in an array, therefore it needs to be accessed minimally.

Therefore, the energy consumption of the IMC technique is

comparatively higher than the I-NMC technique when

computing operations with serial propagation. For example,

to compute an 8-bit multiplication, IMC requires 102 bitline

(dis)charging, and I-NMC requires 8 bitline (dis)charging

and the compute logic energy which is much lesser than the

bitline (dis)charging energy.
 Now, let us look at the sparse matrix index checking

system shown in Figure 3 that uses a more enhanced version

of I-NMC technique, incorporating more in-memory based

compute support. Figure 3 shows a sub-array with two

partitions, one with std. 6T SRAM cell (marked as <8:63>)

and other with 9T NOR-CAM cell (marked as <0:7>). The

circuit design (In-memory DAC circuit) is proposed by A.K.

Ramanathan et. al. [17], which can convert the digital value

Figure 3: I-NMC technique based sparse matrix index checking

engine placed in a sub-array.

Figure 4: Speed-up and energy comparison of I-NMC

against NMC system for various sparse matrix datasets

with sparsity information.

stored in the SRAM memory cell into its analog equivalent

using the CAM peripherals. The in-memory DAC

conversion is done in parallel across all the rows,

augmenting the I-NMC with massively parallel in-memory

computation. In conjunction to the in-memory DAC circuit

design, the system requires additional near memory compute

logics (registers, I-NMC compute unit, FSM- control logic)

to perform sparse matrix index handling mechanism within

the sub-array. This system intelligently reduces the number

of checks by using compare operations and sends the

corresponding data out to the compute logic only on the

index match.
 The I-NMC sparse matrix index handling system is

compared against a NMC baseline which executes similar

index handling mechanism for various sparse matrix datasets

from SuiteSparse Matrix Collection [18] shown in Figure 4.

The I-NMC system shows high speed-up and energy gains

mainly attributing to the lesser data traversals and high

parallelism within the memory compared to the NMC

system.

5. Case study: SpGeMM

5.1 Design overview

 SpGeMM is one of the fundamental computations in

executing ML tasks. Matrix workloads have become

ubiquitous and the fundamental computations in many

present-day applications. We observe variable sparsity

anywhere from 60% to 99% in these workloads. Several

works from the literature [19-21] describe efficient sparsity

handling technique. With the increase in matrix dimensions

coupled with the sparsity nature, several hardware

approaches end up performing poorly. The resultant memory

and compute bottleneck can be alleviated by I-NMC design

style as it will assist in higher performance as well as avoid

un-necessary computation and thereby saving power.

 This design relies on four key steps depicted in Figure 5.

At least one of the two Matrix must be stored in memory for

there to be any potential benefit from I-NMC. Hence as part

of STEP 0, Dense input Matrix data is written into the

memory. Either both matrix data can be written

simultaneously, or second matrix can be a streaming input to

the compression hardware. This approach works well for

storing the entire weight matrix of initial stages of several

Neural Networks. As part of STEP1, Matrix data is parsed

row-wise and for every parsed row, non-zero element and

the corresponding column information is generated. The

rearranged version of the from Figure 5 helps in efficient

data mapping. Using the index information, multiple non-

zero column elements per row are squeezed together and

stored in the corresponding memory locations. The index

generation hardware requires only around 1% of the I-NMC

entire design area. Index information is then stored in a

Content Addressable Memory (CAM) or TAG memory for

TAG matching during the Multiplication operation. Nonzero

data and the column information are stored in separate

SRAM arrays but at the same address location.

 This design can extract the non-zero elements and the

corresponding index every clock cycle. Thus, the index from

column position of one Matrix is matched with all the indices

form row information in one clock cycle form the second

matrix data. CAM search enable this matching across all the

index generated from STEP 1. TAG match results in reading

Figure 5: SpGEMM design flow. Bulk comparison is performed through IMC while index handling and MAC operation are

designed as NMC hardware.

all non-zero data (from Mem: Data) and destination address

(from MEM: Col info) belonging to a column. In this case,

CAM operation is equivalent to performing search across

entire matrix row and hence can be considered as IMC

operation. Elementwise multiplication and accumulation

follow this step. Once the dense matrix is represented in a

sparse format, we can perform multiplication every clock

cycle. Therefore, number of non-zero elements directly

determines the computation cycles.

5.2 Microarchitecture
 This section describes the Microarchitecture, memory and

near memory logic requirements for the design. Figure 6

shows the simplified microarchitecture with the SRAM

memory divided into three sub regions and a CAM memory

to store the sparse information in the form of indices. In this

design, the maximum size of one SRAM array is 256x8B

wide. However, the approach remains same for larger

matrices occupying more memory space. The design also

assumes that each matrix element is 1Byte wide and hence

the memory array can hold up to 8 elements of a row. Inputs

are stored in “Mat Data” array and the controller configure

the read/write control signals, generates address and

computes the sparsity information. Comparator and pop

count logic to obtain the sparse index, non-zero data and the

destination. A wider memory or multiple instances with the

same hardware will enable index generation across a wider

data set. A single hardware can be used to generate both row-

wise and column-wise sparse representations. We can also

choose to replicate the hardware to perform these two

operations simultaneously. Index and data corresponding to

non-zero elements are stored in the address spaces of

“SprData” and “SprAddr”.

 Since the memory array is 8B wide, an eight-stage pipeline

hardware generates the first compressed information after 8

cycles of data read and then each clock cycle generates

sparse information for the rest of the matrix data. As and

when the sparse index information is computed for second

matrix, the index is compared for a TAG match. A match

means that both the matrices have nonzero elements at the

same index locations and should be multiplied. A match fail

refers to at least one zero element in either of the matrices

and resultant of multiplication is a ‘zero” and hence we can

avoid the computation on those rows completely.

 Chiplet based integration approach can be useful in

separating the Memory and logic portions of the design. 3D

integration with logic on memory stacking further helps in

reducing the overall memory footprint without

compromising on the performance.

 5.3 Computation cycle for large matrix dimension
 Overall computation cycle for N x M Matrix is shown in

TABLE I. For large matrices and when the second matrix

sparse data is already stored in SRAM, number of non-zero

elements directly translate to the overall computation cycle.

Compression can be parallelized across the columns and

Figure 6: SpGEMM design flow. Bulk comparison is performed through IMC while index handling and MAC operation are

designed as NMC hardware.

hence saves much computation latency. Near memory

accelerator minimizes the data movement cost by not

repeatedly accessing the storing the data. Compared to this

design SpGEMM computation by making use of SpVM

techniques require N x M cycles without compressing one of

the matrices.

6. Conclusion
 Both IMC and NMC are very promising techniques to

overcome the performance bottleneck due to increased data

traffic while executing ML tasks. While SRAM based IMC,

techniques are most suited for Boolean operations, CAM

based IMC amalgamated with NMC techniques show further

opportunities in accelerating fundamental computations of

AI and ML tasks. Throughout this paper, we described

qualitatively with examples that show benefits of IMC using

PIM_OPC and advantages of combining IMC and NMC by

taking a specific example of SpGeMM. These techniques

can be further extended for several graph analytics tasks.

Combination of different IMC and NMC techniques can

further unlock opportunities in accelerating applications and

tasks beyond those which are described in this work.

7. References

[1] George, Sumitha, et al. "MDACache: Caching for

multi-dimensional-access memories." 2018 51st Annual

IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 2018.

[2] S. R. Swamy Saranam et al., "Optimization of

Intercache Traffic Entanglement in Tagless Caches

With Tiling Opportunities," in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 39, no. 11, pp. 3881-3892, Nov. 2020

[3] S. K. Thirumala et al , "Non-Volatile Memory utilizing

Reconfigurable Ferroelectric Transistors to enable

Differential Read and Energy-Efficient In-Memory

Computation," 2019 IEEE/ACM International

Symposium on Low Power Electronics and Design

(ISLPED), Lausanne, Switzerland, 2019, pp. 1-6

[4] Parveen, F et al., Hielm: Highly flexible in-memory

computing using stt mram. In 2018 23rd Asia and South

Pacific Design Automation Conference (ASP-DAC)

[5] S. Kim et al., "Processing-in-memory in High

Bandwidth Memory (PIM-HBM) Architecture with

Energy-efficient and Low Latency Channels for High

Bandwidth System," IEEE 28th EPEPS.

[6] Srinivasa, Srivatsa, et al. "Monolithic 3D+-IC based

reconfigurable compute-in-memory SRAM Macro."

2019 Symposium on VLSI Technology. IEEE, 2019.

[7] Ramanathan et al. "Look-up table based energy efficient

processing in cache support for neural network

acceleration." 2020 53rd Annual IEEE/ACM (MICRO).

[8] Fu-Kuo Hsueh et al., "TSV-free FinFET-based

monolithic 3D+-IC with computing-in-memory SRAM

cell for intelligent IoT devices," in 2017 IEDM.

[9] S.Aga et al., "Compute Caches," IEEE International

Symposium on High Performance Computer

Architecture (HPCA), Austin, TX, 2017

[10] Srinivasa, Srivatsa, et al. "Monolithic-3D Integration

Augmented Design Techniques for Computing in

SRAMs." 2019 IEEE ISCAS.

[11] Eckert, Charles, et al. "Neural cache: Bit-serial in-

cache acceleration of deep neural networks." 2018

ACM/IEEE 45th ISCA. IEEE, 2018.

[12] D. Fujiki et al., "Duality Cache for Data Parallel

Acceleration," 2019 ACM/IEEE 46th ISCA 2019.

[13] Jintao Zhang et al., "In-memory computation of a

machine learning classifier in a standard 6T SRAM

array," IEEE Journal of Solid-State Circuits, 2017

[14] Chen et al., Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional

Neural Networks," in IEEE JSSC, pp. 127-138, 2017.

[15] Y. Chen et al., A machine-learning supercomputer. In

47th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 609–622, Dec 2014.

[16] Yakun Sophia Shao et al., Simba: Scaling deep-learning

inference with multi-chip-module-based architecture. In

Proceedings of MICRO ’52, 2019.

[17] A.K. Ramanathan, et al., “Monolithic 3D+-IC Based

Massively Parallel Compute-in-Memory Macro for

Accelerating Database and Machine Learning

Primitives” in 2020 IEDM.

[18] https://sparse.tamu.edu/

[19] Kanellopoulos et al., SMASH: Co-designing software

compression and hardware-accelerated indexing for

efficient sparse matrix operations 2019

Microarchitecture, MICRO, pp. 600-614.

[20] W. Liu and B. Vinter, "An Efficient GPU General

Sparse Matrix-Matrix Multiplication for Irregular

Data," 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, Phoenix, AZ, 2014,

pp. 370-381, doi: 10.1109/IPDPS.2014.47.

[21] A. K. Ku, J. Y. Kuo and J. Xue, "Hardware Support for

Efficient Sparse Matrix Vector Multiplication," 2008

IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing, Shanghai, 2008, pp. 37-43, doi:

10.1109/EUC.2008.154.

TABLE I: Overall SpGeMM compute cycle

 Operation (NxM Matrix 1) Cycles

Step 0 Data write phase to SRAM N

Step 1 Row read + index generation 1 + 8

Step 2 IMC compare + retrieve

 destination location

1 + 1

Step 3 Multiplication operation 1

Step 4 Accumulate + store 1 + 1

Total N rows of a matrix ~N+ Δ

