
 

Trends and Opportunities for SRAM Based In-Memory and Near-Memory 

Computation 
Srivatsa Srinivasa1, Akshay Krishna Ramanathan2, Jainaveen Sundaram1, Dileep Kurian1, 

Srinivasan Gopal1, Nilesh Jain1, Anuradha Srinivasan1, Ravi Iyer1, Vijaykrishnan Narayanan2 and 

Tanay Karnik1 
1 Intel Corporation 2 The Pennsylvania State University. 

Abstract 
    Changes in application trends along with increasing 

number of connected devices have led to explosion in the 

amount of data being generated every single day. Computing 

systems need to efficiently process these huge amounts of 

data and generate results, classify objects, stream high 

quality videos and so on. In-Memory Computing and Near-

Memory Computing have been emerged as the popular 

design choices to address the challenges in executing the 

above-mentioned tasks. Through In-Memory Computing, 

SRAM Banks can be repurposed as compute engines while 

performing Bulk Boolean operations. Near-Memory 

techniques have shown promise in improving the 

performance of Machine learning tasks. By carefully 

understanding the design we describe the opportunities 

towards amalgamating both these design techniques for 

obtaining further performance enhancement and achieving 

lower power budget while executing fundamental Machine 

Learning primitives. In this work, we take the example of 

Sparse Matrix Multiplication, and design an I-NMC 

accelerator which speeds up the index handling by 10x-60x 

and 10x-70x energy efficiency based on the workload 

dimensions as compared with non I-NMC solution 

occupying just 1% of the overall hardware area.  
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1. Introduction 
    With the increasing data centric nature of present-day 

application domains like AI, graph analytics etc., speed of 

execution and energy efficiency challenges have become 

utmost importance metrics. Current computing techniques 

limits performance and spend huge amount of energy in 

executing these data centric tasks. Traditional systems 

require huge amount data to be transferred from a memory 

system to the processing elements (PEs) through a very 

narrow and parasitic channel resulting in a performance 

bottleneck. Increase in overall compute capacity with 

additional hardware and PEs will become redundant if the 

channel BW is not able to provide the required data at the 

right time. While memories rely on capacity aware design 

(packing more bits on chip), PEs favor performance aware 

design. Capacity centric design makes the memories slower, 

bulkier and performance centric design makes the PEs more 

complex, area inefficient and power hungry. 

    Blurring the ever-growing logic-memory performance 

gap (due to contrasting design requirements) has led to 

revisiting the already existing design strategies and look for 

alternate and yet promising solutions. Multiple published  

 

works from the literature emphasize on various caching and 

tagging strategies for addressing the performance gap in 

processors [1,2]. GPUs have been shown to accelerate the 

performance of many data centric workloads, at the cost of 

high-power consumption. FPGAs are capable of providing a 

high degree of parallelism but running at reduced clock 

frequencies and thereby compromising on the speed of 

AI/ML execution.    

    Another class of design solution gaining wide popularity 

is to compute wherever the data resides or by designing PEs 

near the memory system. Subcategories in this class are In-

Memory Computing (IMC) and Near Memory Computing 

(NMC). In this paper, we term IMC for those techniques 

which manipulate data as part of memory access without 

needing a conventional hardware. We term those techniques 

as NMC, which require a standard hardware integrated at the 

periphery of memory system with wide direct access to the 

memory. Advantages of IMC and NMC are attributed to two 

main design principles of the memory system, a) hierarchical 

organization into Banks and sub-arrays and b) Huge 

Bandwidth (BW) internal to the system. Hierarchical 

organization provides massive computation parallelism 

while high internal BW minimizes the data movement. By 

taking advantage of these two properties effectively, IMC 

and NMC techniques provide higher performance at a 

fraction of power budget.    

    The compute centric to memory centric design evolution 

through IMC and NMC are further fueled by unique 

properties (non-volatility, crossbar architecture, high density 

etc..) of emerging memory technologies [3-5] (FeFET, STT-

MRAM, PCM etc..) and developments in 3D integration 

process (HBM, HMC, sequential 3D integration etc..). 

However, high write latency, low endurance and operations 

susceptible to variations at low voltage make these emerging 

memories not suitable candidates to replace on chip SRAM 

memories in the near future.  

    Hence numerous solutions have been proposed to enable 

IMC and NMC with SRAM as the target memory system. 

Most of the IMC solutions propose to minimally alter the 

SRAM cell and read technique to perform computation 

without drastically affecting the memory density. Some 

solutions make use of monolithic 3D integration [6] to 

enhance the computation capability of SRAM. However, 

IMC cannot perform all the fundamental and performance 

critical tasks as part of data readout. Hence NMC technique 

or combination of IMC and NMC will bring accelerated 

performance to many application categories. This paper 

describes the trends and opportunities for SRAM based IMC 

and NMC techniques. As an example, we will also describe 

effectiveness of combining IMC and NMC while designing 

hardware for Sparse Matrix Multiplication (SpGeMM). 
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2. Background 

2.1 IMC and NMC: Classification 
    Figure 1 illustrates memory organization and the channel 

connectivity to PEs with IMC and NMC designs. Primary 

characteristic of IMC designs (Figure 1(a)), is to avoid data 

traversal to low BW channel. Minimal modifications to the 

bit-cells, Peripherals like Decoder and Sense circuits are 

carried out in order to perform computation as part of data 

read out. Therefore, only a handful of computations are 

possible with this technique without compromising the 

memory properties like access speed and density. 

    On the other hand, PEs can directly access the High BW 

memory channel in case of NMC (fig. 1(b)). Even though 

PEs are responsible for overall computation, data mapping 

within the memory arrays is crucial for performance. Several 

studies show promise with NMC designs [7] making use of 

IMC to prepare the initial data for computations in PEs. 

Subsequent sections describe more about this strategy. 

 2.2 Performance metrics 
    Parallelism, computation cycles and area of additional 

logic (apart from memory) are the three basic metrics which 

can determine whether IMC or NMC is suitable for a 

particular task. For example, IMC solutions are best if 

implementing only Boolean logic, because of minimal 

changes to memory design and single cycle execution. 

However, for complex operation (like Multiplication), a 

formal definition of a metric is necessary to develop a best 

design strategy. Processing-in-Memory Operations per cycle 

(PIM_OPC) was introduced [7] for this purpose. PIM_OPC 

is an indicator of the degree of compute parallelism 

supported by the memory. For example, considering column 

multiplexing of 4:1, for the memory in Figure 2, 8 Boolean 

operations (8-bit operands and bit-parallel computing) per 

cycle are possible in one PIM cycle without transferring the 

data to PEs outside the memory.  Hence PIM_OPC in this 

case is 8 considering all 64 bitlines computing in parallel. 

Higher PIM_OPC suggests higher parallelism and faster 

computation. Two ways of improving the PIM_OPC are a) 

increasing the computation parallelism and b) reducing 

compute cycles. We discuss this in detail for different IMC 

designs in the subsequent section to describe the IMC 

compatibility and/or need for NMC based solution. 

3. Trends and opportunities: IMC 
    Since caches occupy significant real estate of the 

processor and IMC transforms the memory into thousands of 

in-memory accelerators, IMC techniques achieve 

performance much higher than CPU and GPU running bulk 

Boolean tasks. IMC in SRAM based processors are 

categorized into bitline computing which perform 

computation as part of data discharge pattern. Fu-Kuo Hsueh 

et al. [8] show Boolean operations as part of data readout 

with a specialized 9T SRAM. S.Aga et al.[9] proposed 

compute caches which repurpose the cache for 

computational purposes. Boolean operations are performed 

using multi row activation technique. Slow compute time as 

compared to data access as a measure to retain the memory 

robustness. Therefore PIM_OPC is slightly lower. 

Configurable SRAM cells using Monolithic 3D (M3D) 

integration process help shorten the cycle time and thereby 

reducing the denominator if PIM_OPC calculation. Work 

from Srinivasa et al. [10] show that the PIM_OPC can be 

increased up to 44% with specialized M3D SRAM cell. 
    In-memory addition can be performed through bitline 

computing by repeatedly computing the fundamental 

Boolean operations which are part of addition. This leads to 

activating the bitlines multiple times and hence increases the 

compute cycle (Proportional to bitline charging-discharging 

count). In-Memory addition operation can be broken down 

into three fundamental operations: a) Bit level SUM 

calculation b) Bit level CARRY computation and c) CARRY 

propagation through memory columns. While direct IMC 

technique can be applied for first two operations, serial 

CARRY propagation requires multiple cycles. This suggests 

that wider data requires more compute cycles.  

 

 

Figure 1: Illustration of the memory organization in (a) In-

Memory computing design. (b) Near-Memory computing 

design  

 

Figure 2: Illustration of PIM_OPC for IMC Boolean 

operation 



 

 

For example, 

PIM_OPC (32-bit,64 additions in parallel) =64/32→ 2 

PIM_OPC (64-bit,64 additions in parallel) =64/64→ 1 

    In-memory addition with data wider than 64 bit brings the 

PIM_OPC to less than 1. However, only benefit through 

IMC is by offloading numerous such operations to every 

array of the SRAM memory and increasing the overall 

throughput. Moreover, having dedicated adder hardware 

near memory enables fast NMC at the cost of additional area. 

This discussion can be further extended to multiplication 

operations (fundamental ML computation). 
    Neural cache [11] and Duality cache [12] run neural 

networks on repurposed caches using multi row activation 

and bit serial computing. Both the designs achieve 

performance much higher than CPU and GPU running the 

same application. NMC techniques discussed in the next 

section overcome poor PIM_OPC for multiplication 

operations thorough NMC. 

    Jintao Zhang et al. [13] proposed multi row activation-

based IMC for linear classification by multiplications using 

bitline current summation technique. This technique requires 

building Digital to Analog converters (DAC) and current 

sense amplifiers within the memory and thereby making the 

resultant system less dense and less robust. 
    While IMC shows clear benefit over CPU and GPUs 

while computing Boolean, arithmetic, Multiplication and 

classification tasks, we can clearly observe that PIM_OPC 

can be further improved either by NMC and/or combination 

of IMC and NMC techniques. Next section discusses the 

opportunities for improved performance while computing 

these tasks through NMC techniques.   

4. Trends and opportunities: NMC 
    NMC systems perform better compared to IMC involving 

serial propagation and multiple cycle requirement (addition 

and multiplication operations which need carry propagation) 

mainly due to design flexibility. For example, the 

multiplication needs to be broken down into multiple 

additions and in turn the addition operation need to be 

broken down into multiple Boolean operations. 
    Many NMC technique-based accelerators have been 

proposed to run neural network applications efficiently. 

Eyeriss [14] maximizes re-use of the inputs and minimizes 

the partial sum reduction costs with systolic dataflow. Y. 

Chen et.al., [15] proposed a neural network supercomputer 

which maps specialized logic of the DNNs to multiple 

chips/nodes which are tightly intercoupled for optimizing 

data movement. Similarly, Simba [16] maps these operations 

onto multiple smaller chiplets in distributed fashion. These 

accelerators incur high H-tree interconnect bus penalties 

while fetching the data from the cache. 
    To avoid interconnect bus penalties, many works [7,17] 

have focused onto building systems which amalgamates 
IMC and NMC techniques. This kind of system avoids the 

interconnect penalties by placing the compute units close to 

each smallest memory unit in a SRAM memory. We 

categorize this type of technique as In-near memory compute 

(I-NMC). A.K. Ramanathan et.al.,[7] have proposed 

systems incorporating I-NMC technique by placing 

specialized compute units near SRAM arrays.  
    Also, the I-NMC technique greatly benefits in terms of 

energy since the data is once read-out of the SRAM array 

and then computed with minimal logic energy consumption. 

Whereas using IMC technique, the bitlines need to be 

charged and discharged repetitively when computing. The 

bitlines are high parasitic lines connecting to the SRAM cells 

in an array, therefore it needs to be accessed minimally. 

Therefore, the energy consumption of the IMC technique is 

comparatively higher than the I-NMC technique when 

computing operations with serial propagation. For example, 

to compute an 8-bit multiplication, IMC requires 102 bitline 

(dis)charging, and I-NMC requires 8 bitline (dis)charging 

and the compute logic energy which is much lesser than the 

bitline (dis)charging energy. 
    Now, let us look at the sparse matrix index checking 

system shown in Figure 3 that uses a more enhanced version 

of I-NMC technique, incorporating more in-memory based 

compute support. Figure 3 shows a sub-array with two 

partitions, one with std. 6T SRAM cell (marked as <8:63>) 

and other with 9T NOR-CAM cell (marked as <0:7>). The 

circuit design (In-memory DAC circuit) is proposed by A.K. 

Ramanathan et. al. [17], which can convert the digital value 

 
Figure 3: I-NMC technique based sparse matrix index checking 

engine placed in a sub-array.  

 
Figure 4: Speed-up and energy comparison of I-NMC 

against NMC system for various sparse matrix datasets 

with sparsity information. 



  

 

 

 

stored in the SRAM memory cell into its analog equivalent 

using the CAM peripherals. The in-memory DAC 

conversion is done in parallel across all the rows, 

augmenting the I-NMC with massively parallel in-memory 

computation. In conjunction to the in-memory DAC circuit 

design, the system requires additional near memory compute 

logics (registers, I-NMC compute unit, FSM- control logic) 

to perform sparse matrix index handling mechanism within 

the sub-array. This system intelligently reduces the number 

of checks by using compare operations and sends the 

corresponding data out to the compute logic only on the 

index match.  
    The I-NMC sparse matrix index handling system is 

compared against a NMC baseline which executes similar 

index handling mechanism for various sparse matrix datasets 

from SuiteSparse Matrix Collection [18] shown in Figure 4. 

The I-NMC system shows high speed-up and energy gains 

mainly attributing to the lesser data traversals and high 

parallelism within the memory compared to the NMC 

system. 

5. Case study: SpGeMM  

5.1 Design overview 

    SpGeMM is one of the fundamental computations in 

executing ML tasks. Matrix workloads have become 

ubiquitous and the fundamental computations in many 

present-day applications. We observe variable sparsity 

anywhere from 60% to 99% in these workloads. Several 

works from the literature [19-21] describe efficient sparsity 

handling technique. With the increase in matrix dimensions 

coupled with the sparsity nature, several hardware 

approaches end up performing poorly. The resultant memory 

and compute bottleneck can be alleviated by I-NMC design 

style as it will assist in higher performance as well as avoid 

un-necessary computation and thereby saving power. 

    This design relies on four key steps depicted in Figure 5.  

At least one of the two Matrix must be stored in memory for 

there to be any potential benefit from I-NMC. Hence as part 

of STEP 0, Dense input Matrix data is written into the 

memory. Either both matrix data can be written 

simultaneously, or second matrix can be a streaming input to 

the compression hardware. This approach works well for 

storing the entire weight matrix of initial stages of several 

Neural Networks. As part of STEP1, Matrix data is parsed 

row-wise and for every parsed row, non-zero element and 

the corresponding column information is generated. The 

rearranged version of the from Figure 5 helps in efficient 

data mapping. Using the index information, multiple non-

zero column elements per row are squeezed together and 

stored in the corresponding memory locations. The index 

generation hardware requires only around 1% of the I-NMC 

entire design area. Index information is then stored in a 

Content Addressable Memory (CAM) or TAG memory for 

TAG matching during the Multiplication operation. Nonzero 

data and the column information are stored in separate 

SRAM arrays but at the same address location.  

    This design can extract the non-zero elements and the 

corresponding index every clock cycle. Thus, the index from 

column position of one Matrix is matched with all the indices 

form row information in one clock cycle form the second 

matrix data. CAM search enable this matching across all the 

index generated from STEP 1. TAG match results in reading 

 

Figure 5: SpGEMM design flow. Bulk comparison is performed through IMC while index handling and MAC operation are 

designed as NMC hardware. 



 

 

all non-zero data (from Mem: Data) and destination address 

(from MEM: Col info) belonging to a column. In this case, 

CAM operation is equivalent to performing search across 

entire matrix row and hence can be considered as IMC 

operation. Elementwise multiplication and accumulation 

follow this step. Once the dense matrix is represented in a 

sparse format, we can perform multiplication every clock 

cycle. Therefore, number of non-zero elements directly 

determines the computation cycles. 

5.2 Microarchitecture 
    This section describes the Microarchitecture, memory and 

near memory logic requirements for the design. Figure 6 

shows the simplified microarchitecture with the SRAM 

memory divided into three sub regions and a CAM memory 

to store the sparse information in the form of indices. In this 

design, the maximum size of one SRAM array is 256x8B 

wide. However, the approach remains same for larger 

matrices occupying more memory space. The design also 

assumes that each matrix element is 1Byte wide and hence 

the memory array can hold up to 8 elements of a row. Inputs 

are stored in “Mat Data” array and the controller configure 

the read/write control signals, generates address and 

computes the sparsity information. Comparator and pop 

count logic to obtain the sparse index, non-zero data and the 

destination. A wider memory or multiple instances with the 

same hardware will enable index generation across a wider 

data set. A single hardware can be used to generate both row-

wise and column-wise sparse representations. We can also 

choose to replicate the hardware to perform these two 

operations simultaneously. Index and data corresponding to 

non-zero elements are stored in the address spaces of 

“SprData” and “SprAddr”.  

   Since the memory array is 8B wide, an eight-stage pipeline 

hardware generates the first compressed information after 8 

cycles of data read and then each clock cycle generates 

sparse information for the rest of the matrix data. As and 

when the sparse index information is computed for second 

matrix, the index is compared for a TAG match. A match 

means that both the matrices have nonzero elements at the 

same index locations and should be multiplied. A match fail 

refers to at least one zero element in either of the matrices 

and resultant of multiplication is a ‘zero” and hence we can 

avoid the computation on those rows completely. 

   Chiplet based integration approach can be useful in 

separating the Memory and logic portions of the design. 3D 

integration with logic on memory stacking further helps in 

reducing the overall memory footprint without 

compromising on the performance. 

 5.3 Computation cycle for large matrix dimension 
    Overall computation cycle for N x M Matrix is shown in 

TABLE I. For large matrices and when the second matrix 

sparse data is already stored in SRAM, number of non-zero 

elements directly translate to the overall computation cycle. 

Compression can be parallelized across the columns and  

 

Figure 6: SpGEMM design flow. Bulk comparison is performed through IMC while index handling and MAC operation are 

designed as NMC hardware. 



  

 

 

 

hence saves much computation latency. Near memory 

accelerator minimizes the data movement cost by not 

repeatedly accessing the storing the data. Compared to this 

design SpGEMM computation by making use of SpVM 

techniques require N x M cycles without compressing one of 

the matrices. 

6. Conclusion 
    Both IMC and NMC are very promising techniques to 

overcome the performance bottleneck due to increased data 

traffic while executing ML tasks. While SRAM based IMC, 

techniques are most suited for Boolean operations, CAM 

based IMC amalgamated with NMC techniques show further 

opportunities in accelerating fundamental computations of 

AI and ML tasks. Throughout this paper, we described 

qualitatively with examples that show benefits of IMC using 

PIM_OPC and advantages of combining IMC and NMC by 

taking a specific example of SpGeMM. These techniques 

can be further extended for several graph analytics tasks. 

Combination of different IMC and NMC techniques can 

further unlock opportunities in accelerating applications and 

tasks beyond those which are described in this work. 
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TABLE I:  Overall SpGeMM compute cycle 

 Operation (NxM Matrix 1) Cycles 

Step 0 Data write phase to SRAM N 

Step 1 Row read + index generation 1 + 8 

Step 2 IMC compare + retrieve 

               destination location 

1 + 1 

Step 3 Multiplication operation    1 

Step 4 Accumulate + store 1 + 1 

Total N rows of a matrix  ~N+ Δ 

 


