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Abstract—FPGAs gain increasing utilization in system prototyp-
ing, low-volume products, and obsolete component replacement.
Driven by high profits, FPGA deployment is suffering from
various attacks, such as reverse engineering bitstream, func-
tionality tampering via hardware Trojans, information leaking
through covert channels, and denial-of-service attacks. Typically,
the investigation of security threats on FPGA deployment is tied
with a specific FPGA chip and its design suite version, either
the discovered attacks or the developed countermeasures are not
easy to migrate to other FPGAs. Thus, the utilization of open
source FPGA CAD tools becomes increasingly attractive. This
work analyzes the new attack surfaces on two open source FPGA
CAD tools: VTR and Symbiflow. The case studies in this work
indicate that practical attacks in open source FPGA computer-
aided-design (CAD) tools can be implemented with minor changes
on the intermediate files generated by the CAD toolchain.

Index Terms—FPGA, open source CAD tool, place and route,
hardware security, hardware Trojan, bitstream.

I. INTRODUCTION

FPGAs are prevalent in system prototyping, hardware im-
plementation for low-volume products, and the replacement of
obsolete components in legacy systems [1], [2]. As highlighted
in the work [3], FPGA security gains increasing attention [4].
There are extensive research efforts on the secure operations
conducted by FPGA devices and safe bitstream delivery. Driven
by the large market profit, attackers are motivated to degrade
the performance of FPGA based systems by using counterfeit
FPGA chips [5], pirate the hardware description of FPGA con-
figuration by reverse engineering the bitstream [6], or tamper
with the FPGA configuration via malicious FPGA Computer-
Aided-Design (CAD) tools.

Among the various attacks on FPGAs, the one conducted in
untrusted FPGA CAD tools are the most challenging to address.
As the FPGA bitstream generation process is not transparent to
FPGA users, malicious modifications made in the intermediate
stages of the bitstream generation process are difficult to notice
and detect. Moreover, for a given FPGA device, there is
no golden bitstream reference available for verification. The
security threats originated from vulnerable FPGA CAD tools
have been reported in handbooks, case demonstrations, and
research articles. For instance, untrusted FPGA CAD tools
can be exploited by attackers to insert hardware Trojans [7],
[8]. The work [9] showcases three attack surfaces on Xilinx
ISE, including the output port of mapping, place & route,
and bitstream generation. That work also indicates that the
Altera FPGA design suite, Quartus, leaves similar backdoors

for hardware Trojan insertion. The work [10] proves that it
is also practical to extract FPGA IPs without interrupting the
original logic function from commercial FPGA CAD tools.

As the investigation of security threats on FPGAs is typically
tied with a specific FPGA chip and its design suite version,
either the discovered attacks or developed countermeasures are
not easy to migrate to other FPGAs. Thus, the study of security
threats on open source FPGA CAD tools will be more valuable
to promote the development of generalized methods for attack-
resilient FPGA designs. To fulfill this purpose, this work
analyzes the new attack surfaces on open source FPGA CAD
tools and provides some attack examples. More specifically,
this work makes the following contributions:

• A generalized attack flow is proposed to implement
stealthy attacks on open source FPGA CAD tools. We
expect that our attack flow will inspire more researchers
to be aware of the new emerging attack methods in both
commercial and open source FPGA CAD tools.

• We analyze the open source FPGA tool, Verilog to Rout-
ing (VTR), to reveal the potential attack surfaces. With
practical and successful attack examples, we showcase the
process of altering the place and blif output files to harm
the original delay and logic allocation on FPGAs.

• We further extend the security vulnerability analysis to
another open source bitstream generation tool, Symbiflow.
The impact of the proposed attacks on the critical and
non-critical path delay is assessed.

The rest of this work is organized as below. Section II
introduces two open source FPGA CAD tools, VTR and Symb-
iFlow. Section III presents the main challenges on analyzing the
security threats from FPGA CAD tools and also characterizes
the attacks implemented on open source tools. Sections IV
and V propose the detailed attack flow and examples designed
in VTR and SymbiFlow. In Section VI, we suggest possible
defense strategies. This work is concluded in Section VII.

II. PRELIMINARIES

A. Open Source FPGA CAD Tool: VTR

Open source FPGA CAD tools enable us to investigate the
impact of various FPGA architectures and CAD algorithms
on FPGA configuration. VTR is open source software that
generates net, place and route files. The design flow of VTR
needs two inputs: the hardware description of a circuit (Verilog)
and an FPGA architecture description file (EARCH.xml). As
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Fig. 1. Open Source CAD flow.

shown in Fig. 1, the entire toolchain of VTR is composed of
three tools: ODIN II, ABC, and Versatile Place and Route
(VPR). Among those tools, ODIN II is equivalent to Yosys
used in the toolchain of Symbiflow.

As an elaboration and synthesis tool, ODIN II reads the
Verilog file and synthesize it into a netlist (a file ends with
the extension .odin.blif ). The tool ABC performs logic opti-
mization and technology mapping based on the .odin.blif file,
producing two blif files .abc-no-clock.blif and .pre-vpr.blif.
The latter one is the final and complete netlist file for the
given Verilog description. At the final stage of VTR, the tool
VPR is responsible for packing, placement, routing, and timing
analysis. The output of packing is saved in a .net file. The
placement information is available in a .place file. The routing
output is stored in .route file. In this work, we study possible
attack surfaces in VTR that could be exploited by attackers to
harm the integrity of a general FPGA design flow.

B. Open Source FPGA CAD Tool: Symbiflow

Symbiflow is an end-to-end open source FPGA synthesis
tool that converts a Verilog file to a bitstream file for FPGAs.
Currently, Symbiflow can support only Xilinx 7-Series, Lattice
iCE40, and Lattice ECP5 FPGAs. The tools Yosys, ABC, VPR,
nextpnr, and open FPGA assembler are used to produce the
bitstream file of the desired FPGA board. Yosys is a synthesis
tool used to convert a Verilog description to the corresponding
hardware netlist and write it to a .eblif file. Next, the Place and
Route (PnR) tool processes the .eblif file to generate a physical
implementation for a specific FPGA device. There are two PnR
tools in Symbiflow: VPR for Xilinx-7 Series and nextpnr for
Lattice iCE40. All the practical attacks performed in this work
are based on the Xilinx-7 Series FPGA. Both VPR and nextpnr
tools write their results to a .fasm file, which will be further
used to generate a bitstream file. The VPR tool also produces
.net, .place, and .route files. In addition, Symbiflow allows users
to perform simple analysis on critical-path delays.

III. PROPOSED GENERAL ATTACK FLOW ON OPEN SOURCE
FPGA CAD TOOLS

A. Importance and Challenges

The investigation on open source CAD tools will provide
FPGA users with better understanding on the potential security

Fig. 2. Proposed general attacks on open source FPGA CAD tools.

threats originated from the untrusted or third-party CAD tools.
With the highlighted caution, FPGA users should reconsider
their FPGA deployment (from specification, system architec-
ture, implementation, to verification and authentication strate-
gies) and develop necessary proactive defense mechanisms.

The main challenges of revealing the security vulnerabilities
on FPGA CAD tools include the facts as follows.
(1) Limited disclosure is available due to the protection for

commercial profits. This is especially the case for the
commercialized FPGA vendors.

(2) The nontransparent synthesis, placing, and routing algo-
rithms adopted in the CAD tools make it difficult for
FPGA users to differentiate the malicious design modifi-
cations induced by the untrusted CAD tools from normal
optimizations.

(3) Most of the intermediate outputs in the FPGA compiling
and configuration flow are not readable. This fact increases
the difficulty for FPGA users to timely perceive the
abnormal operations embedded by malicious FPGA tools.

(4) To generate a bitstream file through open source tools, the
toolchain may use multiple open source software. Some
malicious software from untrusted third parties may be
mingled with the official FPGA CAD tools. The use of
multiple open source software could render to new attack
surfaces other than the known security vulnerabilities of
each individual tool.

(5) As FPGA CAD tools are often updated, it is difficult
to keep the same update pace to investigate the new
security threats and revise the existing countermeasures
accordingly.

(6) Different with the commercial FPGA design suites, the
current open source FPGA CAD tools only have very
limited functionality for power and timing analysis tools.
Consequently, open source tool users will not be able
to zoom in the security issues and assess the potential
security risk.

B. Generalized Attack Flow in Open Source FPGA CAD Tools

Despite diverse FPGA CAD tools using different interfaces
in the process of design compiling and bitstream generation,
we abstract the common steps that a typical attack will take



Fig. 3. Overview of attack surfaces on VTR.

and summarize them in Fig. 2. In step 1, an attack performed
via FPGA CAD tools will selectively incorporate the user
constraints, either ignoring the user’s constraints or stealthily
adding new constraints, so that the FPGA configuration could
be modified covertly. In step 2, attackers need to fully under-
stand the format of the intermediate output files (e.g., .blif)
and foresee what changes on the intermediate files can fulfill
the intended attack purpose. The core attacks on FPGAs will
take place in step 3. One could modify I/O and also alter
the Boolean expressions indicated by the hardware description
language. Step 4 is the most challenging one as the success
of bitstream generation requires the modified intermediate files
to be acceptable in other phases of the CAD flow. Attackers
need to collaboratively adjust the malicious modifications so
that the intermediate files are synchronized in the entire FPGA
configuration flow. In an open-source FPGA CAD tool, that
fact that all the intermediate stages whose input or output file
open for editing will introduce potential attack surfaces.

IV. ATTACK SURFACES ON VTR

In this section, we use VTR as an example to show what
potential attack surfaces that can be exploited to implement
practical attacks on open source FPGA CAD tools. After
understanding the file format of each tool in the VTR toolchain,
we identify three attack surfaces as shown in Fig. 3: .blif,
.net, .place files after ABC, Net and Place, respectively. More
precisely, we have successfully realized three types of attacks
to alter input ports, output ports, and logic truth tables.

A. Potential Attack Surfaces

1) .blif File: A Berkeley Logic Interchange Format file
(.blif) describes the logic level hierarchical circuit in a textual
format. Figure 4(a) shows an example of a .blif file for a design
under attack. The .blif file consists of four important parts:
.model (the module name, e.g., Test M1), .inputs (all the input
pins for the module), .outputs (all the output pins), and .names
(the complete list of signals involved in a particular output
logic e.g., N4). All those four parts can be the target of attacks
conducted on the .blif file.

2) .net File: A .net file keeps the same information indicated
in a .blif file and further includes block names, subblocks,
instances, modes, and clocks. The information inside the block
is populated based on the Architecture file (EArch.xml) being
used. If only the .net file is modified, the FPGA CAD tool
will detect the mismatches between the original .blif and
the tampered .net files, generating an error message to warn

(a)

(b) (c)

(d)

Fig. 4. Implementation of the input attack on the .blif and .net files. (a)
Tampered .blif file (modified portion highlighted in red boxes), (b) graphical
view of the mapped circuit before attack, (c) graphical view of the mapped
circuit after attack, and (d) equivalent modification on the .net file.

FPGA users. As a result, the following placing and routing
will be halted. However, if the .blif and .net are corrupted
collaboratively, the attack will go through the integrity check
built in the CAD tool.

3) .place File: A .place file has information about where
the blocks will be placed in the FPGA fabric. Three types of
attacks could be conducted by altering the .place file: X and Y
coordinates for the position of the block, and subblock number.
The tampered coordinates will guide the VPR to re-route the
input and output pins to some places, where it will be easier
for attackers to probe and develop covert channels later.

B. Basic Attack Implementation

1) Attack on Inputs and Outputs: In this attack, the .blif file
could be modified to create a new input pin in the circuit to
alter the original functionality or add new logic. This attack will
be succeed if the attacker changes .inputs and .names as shown
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(b)

Fig. 5. Implementation of the logic attack on .blif file. (a) Modified .blif file
due to the attack on logic description, and (b) waveform showing the change
on logic table leading to tampered output.

in Fig. 4(a). The fourth column is added to the lines 10 to 12.
Although the VTR tool checks for the file integrity when that
.blif file is sent to VPR for packing, placement, and routing,
the attack described above can successfully render to the result
shown in Fig. 4(c). Comparing the baseline circuit mapping
before the attack shown in Fig. 4(b), we can see that the attack
introduces one more input pin (we have four blue blocks now,
instead of three). The number of output pins (in red) remains the
same but the location is shifted, as well. Attackers can follow
the similar procedure to add new output pins to the .blif file.
The tampered .net file will be similar with the one shown in
Fig. 4(d). A block will be added for the newly introduced pin.
The attack via the .net file is less readable (thus more stealthy)
than the attack via the .blif file.

2) Attack on Logic Truth Table: Another modification adver-
saries could perform is sabotaging the original logic truth table.
This is practical for an attacker who have a good understanding
on the target design. The truth table is defined in the .blif file
under the line starting with the keyword .names. Theoretically,
one can remove/add one row or revise the logic in the original
table in the attack. Due to the built-in integrity check in VTR,
the output of VPR will only be accepted if the attack on
the logic truth table removes some rows, instead of adding
new rows. We resume the same baseline example used in
Fig 4(a) to implement the attack on logic description. As
shown in Fig. 5(a), the logic expression on line 12 is removed.
Consequently, the output of N4 is altered by the attack. The
red circles in Fig. 5(b) highlight the change in outcome of the
proposed attack. Another interesting observation we notice is,
VTR does not have a capability to check if the logic description
is modified. Functional verification (conducted in other tools)
is necessary to detect the attack on logic truth table.

C. Practical Attack on 8-bit Linear Feedback Shift Register

Linear Feedback Shift Register (LFSR) is often used to gen-
erate random numbers for cryptographic modules. Depending
on the feedback paths, different random number sequences can

(a)

(b)

Fig. 6. Impact of FPGA CAD attacks on an 8-bit LFSR circuit schematic. (a)
LFSR before attack and (b) LFSR after attack.

Fig. 7. LFSR feedback logic described in the .blif file. Note that the attack
from the FPGA CAD tool removes Line 1, a part of the feedback loop logic.

be shifted from the serially connected registers. We employ
the basic attack implementation introduced in Section IV-B
to perform a practical attack on a 8-bit LFSR such that the
generated random numbers are confined in a limited range.

Figure 6 shows the schematic of the LFSR design before
attack. Normally, this LFSR can produce 255 different random
numbers. Through the tool VTR, we can successfully imple-
ment the pin creation attack and logic attack. The former attack
adds a new output pin in the .blif file for the LFSR to leak the
random numbers being generated. The pin creation attack on
the .blif file changes the LFSR circuit, the schematic of which
is shown in Fig. 6(b). Note that the new output pin, aopin, is
added in the LFSR module to manipulate the feedback loop.
The logic attack sabotages the normal function of the LFSR.
Figure 7 shows that Line 1, which specifies the feedback logic,
is modified by the malicious FPGA CAD tool.

The consequence of the combination of pin insertion and
logic modification attacks is illustrated in Fig. 8. As shown in
Fig. 8(a), the dynamic range of the random numbers generated
by the tampered LFSR is significantly smaller than that for the
original LFSR. Moreover, the diversity of the random numbers
due to the FPGA CAD attack is decreased dramatically. As
shown in Fig. 8(b), the LFSR suffering from the FPGA CAD
attack only generates a limited number of distinct random
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Fig. 8. Impact of pin addition and logic modification attacks from the malicious
VTR on the random numbers generated by the 8-bit LFSR.

numbers; in contrast, the LFSR without the attack can produce
evenly distributed random numbers in the range of 0 and 255.

V. ATTACK SURFACES ON SYMBIFLOW

A. Potential Attack Surfaces

The FPGA CAD tool SymbiFlow has more capabilities than
VTR and it is capable of generating executable bitstreams. We
have identified two attack surfaces in the Symbiflow toolchain,
as shown in Fig. 9. The .eblif (generated by Yosys) and .place
files (produced by the Place tool in VPR) are vulnerable to the
attacks from FPGA CAD tools. An Extended Berkely Logic
Interchange Format (.eblif) file is similar with a .blif file except
for a few changes in the structure. All the attacks performed on
.place file in the VPR tool are also implementable in Symbiflow
since VPR is embedded in the Symbiflow toolchain.

B. Basic Attack Implementation on .place

The basic attack implementations discussed in Section IV-B
are applicable in Symbiflow. Another basic attack can be
realized in SymbiFlow is tampering with the .place file. The
FPGA fabric location for the blocks can be modified by
changing the coordinates in the .place file. For instance, as
shown in Fig. 10, the y coordinates of a block N1 are changed
from 104 to 124. Although Symbiflow does not have graphical

Fig. 9. Overview of attack surfaces on Symbiflow.

(a)

(b)

Fig. 10. Implementation of an input attack on .place file. (a) Original .place
file before attack, (b) the .place file after attack.

TABLE I
TIMING SLACK AFFECTED BY THE ATTACKS ON SYMBIFLOW.

Case ID Y-Coordinates Holding time Setup time
Original 104 2.214 ns 2.418 ns
Attack 1 124 2.418 ns -3.011 ns
Attack 2 134 2.214 ns -3.424 ns
Attack 3 144 2.214 ns -3.631 ns
Attack 4 154 2.214 ns -3.913 ns

TABLE II
TIMING RESULTS FOR DIFFERENT CIRCUITS AFTER ATTACKING .PLACE FILE

Circuit .place File Holding Time Setup Time
Critical Non Critical Critical Non Critical

S298
Normal Operation 3.046 ns 1.731 ns -4.201 ns -0.464 ns
Under Attack 3.046 ns 1.415 ns -4.185 ns -0.637 ns
Under Attack 3.046 ns 1.371 ns -4.185 ns -0.464 ns

S15850
Normal Operation -0.585 ns 0.75 ns -8.966 ns -3.046 ns
Under Attack -0.708 ns 0.345 ns -8.966 ns -2.938 ns
Under Attack -0.908 ns 0.343 ns -8.966 ns -2.923 ns

view, it can report holding and setup timing for the generated
bitstream. As shown in Table I, the malicious modification on
the N1 block’s Y-coordinates in the .place file leads to different
time slacks on holding and setup time. The affected time slack
could be positive or negative, compared to the original ones.
A negative time slack is difficult to detect since the attack
does not influence the worse-case delay. We also examined
the impact of this attack on two benchmark circuits s298 and
s15480. The results shown in Table II indicate that our attack
has negligible impact on the critical-path delay but could result
in large changes on the non-critical paths.
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Fig. 11. FPGA implementing a covert channel on AES. (a) Schematic of
tampered AES design, (b) FPGA running the normal AES operation, (c) and (d)
FPGA running the AES with a covert channel leaking the cryto key information
at different moments.

C. Practical Attack on AES

In this section, we demonstrate how the malicious FPGA
CAD tool can implement a covert channel in an AES encryption
module as shown in Fig. 11(a). We assume that the CAD tool
has an internal library, which includes the Trojan design that
modulates the secret key used in the encryption module. The
CAD tool scans the .eblif file for the AES module and then
adds the Trojan logic to that .eblif to form a covert channel.
Once the modified .eblif is ready, two more files are changed
to ensure the successful generation of bitstream file for the
targeted FPGA (In our experiment, we used Digilent Nexys
Artix-7 FPGA board). The constrains file (.pcf) and the make
file are changed to assign all the ports to the FPGA board and
required instructions are passed to the toolchain to generate
the bitstream file. All the old .net, .place, .route, .FASAM and
.bit files are removed from the directory. Figure 11 (b) shows
the normal operation of AES encryption module. Figures 11(c)
and (d) show the information leaked through the covert channel
implemented through Symbiflow.

VI. SUGGESTION FOR DEFENSE STRATEGIES

To mitigate the potential attacks in the open source FPGA
CAD tools, both FPGA software developers and FPGA users
need to employ some proactive defense mechanisms. The
FPGA software developers can design some security features
in the CAD tools to protect the integrity of intermediate
files. For example, the intermediate files can be encrypted
or randomized. Without the knowledge of internal encryption
key and randomization seed, the malicious software attached

to the original FPGA CAD tools cannot precisely perform
modifications to achieve the intended attack purpose.

FPGA users can obfuscate the Verilog-level designs to mis-
lead attackers. For example, dummy logic or dummy compo-
nents can be inserted to the original design. Without a deep
understanding on the original design, the malicious modifi-
cations might land in the dummy logic and thus the attack
from the FPGA software will not cause any malfunctions.
Manipulating the dummy components, such as fake pins, cannot
leak information successfully.

VII. CONCLUSION

FPGA security becomes a big concern in the FPGA de-
ployment. As more and more third-party FPGA IPs and their
associated tools are integrated into the FPGA CAD toolchain,
more security threats will challenge the integrity and attack
resilience of FPGA designs. Due to the limited disclosure on
the security vulnerabilities of FPGA CAD tools, the coun-
termeasure development for FPGA security grows slowly. To
facilitate more efficient and effective countermeasure designs,
we analyze two representable open source FPGA CAD tools
to identify the potential attack surfaces, which could be ex-
ploited by attackers to harm the integrity of FPGA compiling
and configuration process. Furthermore, we propose the basic
attack implementation methods on those attack surfaces and
provide practical attack examples. Our case studies confirm the
feasibility of our generalized attack flow. In future work, we
will explore feasible countermeasures to assure the integrity
of the FPGA intermediate configuration files and investigate
effective defense methods to thwart the attacks from malicious
FPGA CAD tools.
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