
Towards Row Sensitive DRAM Refresh through
Retention Awareness

Tanmay Goel†, Divyansh Maura†, Kaustav Goswami†, Shirshendu Das‡ and Dip Sankar Banerjee§
†Indian Institute of Information Technology Guwahati, Assam, India

‡Indian Institute of Technology Ropar, Punjab, India
§Indian Institute of Technology Jodhpur, Rajasthan, India

{tanmaygoel972,mauradivyansh,kaustavgoswami.2013}@gmail.com, shirshendu@iitrpr.ac.in, dipsankarb@iitj.ac.in

Abstract—Dynamic Random Access Memory (DRAM) is the
de-facto choice for main memories in modern day computing
systems. It is based on capacitor technology, which is volatile
in nature. Hence, these memories require periodic refreshing,
usually at 64 ms, in order to ensure data persistence. Refreshing
results in blocking of the memory device for performing normal
read or write operations. However, it has been found that not
all cells of the device requires uniform refreshing at 64 ms. Due
to shrinking of technologies, deviations are observed in nominal
parameters which causes variations in retention and restoration
time.

In this paper, we propose a retention aware DRAM refreshing
model, which is operated in auto-refresh (AR) mode of a DRAM
device. We call the proposed model Lightweight Retention Time
Aware Refreshing, or simply LRAR, which can be operated either
in a deterministic or an approximate mode while consuming
a constant amount of hardware space. The former ensures
consumption of least possible area in comparison to previously
proposed works. While the latter is aimed to incorporate periodic
refreshing for a newly emerged DRAM phenomenon called
Variable Retention Time, or, VRT, which uses the basics of
approximation. After extensive evaluation, we find that our
proposed model reduces execution time of programs up to 11%
(9.4% on average). The memory system’s energy consumption
is also reduced by an average of 11.5%, and refresh energy by
an average of 73.6%. We achieve the aforementioned gains at a
modest area overhead of 7,240µm2 (0.0018% of a 400mm2 die)
and storage overhead.

Index Terms—DRAM, retention time, DRAM refreshing

I. INTRODUCTION

In current computing systems, DRAM technology has been
the primary selection for main memories due to its cost ef-
fectiveness. Newer memory technologies have been proposed
with promising results, however, in terms of cost effectiveness
and longevity, DRAM devices still remain as the ideal choice
for the same [1]. However, DRAM devices are also responsible
for a significant portion of the system’s total energy [2].
According to Cheng et al. [2], the DRAM alone responsible
for consuming up to 40% of the system’s energy. One of the
driving factors for cost effectiveness of these devices is the
fact that this is a capacitor based technology. Information in
the form of bits is stored as charge in a DRAM capacitor or
cell. Naturally, in order to maintain the data integrity of the
device, the capacitors are periodically recharged, which is also
known as DRAM refreshing. It is predicted that due to DRAM
scaling, this energy consumption figure is likely to rise up to

50% [3]. Therefore it has now become a priority for DRAM
manufacturers and researchers to optimize energy consumption
in a DRAM, especially in terms of refresh energy.

There have been several research works on the aforemen-
tioned issue of optimizing DRAM refreshes [3]–[5]. Two
of the major directions where there have been significant
contributions include access aware refreshing and retention
aware refreshing. The key observation in the former technique
is that a recently accessed row would not require refreshing in
the near future as its cells were recharged while accessing the
data [6]. The latter exploits a key observation that not all cells
of a DRAM device need refreshing at a uniform interval as
defined by manufacturers. This time, called tREFW, is usually
64 ms [7] which accounts for the retention time of the weakest
DRAM cell. This fact has been exploited by Liu et al. [4],
where the authors proposed a refreshing mechanism which
refreshes a DRAM row only at its required refreshing interval.
Information of retention times of all rows is kept via the use of
bloom filters. Hassan et al. [5] kept a separate space to remap
weak rows in order to increase the refresh time of the DRAM
device by 2x-4x.

One of the key observations that needs consideration is the
fact that based on retention time profiling, we can mathemat-
ically calculate out an approximate number of rows, which
requires refreshing at an interval lower than 256 ms, which
we call weak rows. This has been previously pointed out
in works like [4], [5], [8]. The number of weak rows is
unlikely to change during the lifetime of a DRAM device [5],
[8]. DRAM manufacturers provide an estimation of weak or
variation affected rows and an equivalent number rows are
present in the device in order to maintain the access latency of
the device [9]. Hence, if we take this fact into consideration,
we see that there is no need to keep information regarding
strong rows as the set of weak rows are unlikely to change in
a commodity DRAM device. As commodity DRAM devices
are cost-sensitive, we believe that allocation of space done
in a deterministic manner to keep information of weak rows
would be sufficient to (a) reduce unnecessary refreshes, and,
(b) become cost-effective.

In another direction, a new challenge for DRAM manufac-
turers has emerged. Known widely as variable retention time,
or, simply VRT, this phenomenon shows random retention time
behaviour of DRAM rows. Qureshi et al. [10] have shown

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 450 22nd Int'l Symposium on Quality Electronic Design

that the conventional Error Correcting Codes (ECC) present
in a DRAM device can correct most of these errors, however,
cannot correct all of these errors. The authors have further
shown that the set of VRT affected rows can consume a size
of up to 31,798 unique rows over a period of 7 days, changing
as frequently as in 15 minutes. This issue has imposed a
heavy overhead on a large number of profiling based retention
time works, previously proposed, due to its frequent profiling
requirements.

In this work, we propose Lightweight Retention Time Aware
Refreshing, or simply LRAR, a one-time profiling based reten-
tion time aware DRAM refreshing technique with minimal
space and area requirements. LRAR has two primary oper-
ating modes, which covers both simple retention time based
refreshing, as well as a technique to cover a large number
of VRT affected rows. It also supports temperature and time
scaling, which ensures its effectiveness for a longer period of
usage. Following are concrete contributions of the work:

1) Deterministic Area and Storage Requirements for Reten-
tion Time Aware Refreshing Model: LRAR uses a determin-
istic storage structure only to store the information of weak
rows. It is operated either in a deterministic manner, which
does not consider VRT rows, or, in an approximate mode,
where LRAR includes VRT rows alongside weak rows. Either
way, the amount of space remains constant.

2) Minimizing Blocking Time of the DRAM Device by Re-
ducing Refresh Instruction Count: This is a direct consequence
of the previously mentioned contribution. Since unnecessary
refreshes are reduced in the proposed model, the memory
system now can serve other memory requests thus allowing
programs to complete faster and consume less energy.

This paper is organized into 7 sections including introduc-
tion. Section II discusses the basics of a DRAM device. The
working of LRAR is discussed in Section III. Section IV
discusses the evaluation platform used and the details of the
experiments performed. Results are analyzed in Section IV.
Section VI highlights related works to the proposed topic.
Finally, Section VII concludes this works with scope for
further improvements.

II. BACKGROUND

A. DRAM Organization and Working

A modern day double data rate (DDR) DRAM device is
organized into six hierarchical levels. At the top, a memory
channel is placed which can be operated concurrently with
other memory channels. A DRAM can accommodate multiple
Dual Inline Memory Modules (DIMMs), which is a module
containing one or more random access memory (RAM) chips.
These are divided into ranks, which can be used to distinguish
DIMM level independence and internal bank-level indepen-
dence. A rank is further divided into chips, which in turn
are further divided into independent banks that provide the
lowest level of independent operation. Each bank has its own
row decoder. Banks are further divided into rows and then
columns.

The master operation of a DRAM device is controlled by
clock enable (CKE) [7] which must be high in order for
the DRAM to receive commands. The incoming command or
address is pushed into the decoding logic of the DRAM. The
first command sent to the DRAM is usually an Activate (ACT)
command which is responsible for selecting the appropriate
bank and row address. The data stored in the corresponding
DRAM cells are then transferred to the sense amplifiers which
retain the data until a Precharge (PRE) command to the same
bank is issued. The equivalent time required is called row
cycle time (tRC), which can be written as tRC = tRAS +
tRP. tRAS is called row access strobe, which is the time
interval between row access command and data restoration in
an DRAM array. tRP is called row precharge time, which is the
time interval that it takes for a DRAM array to be precharged
for another row access. Every ACT command has to have a
PRE command associated with it. A READ or a WRITE can
only be performed by the DRAM in its active state. DRAM
uses capacitors to store information as bits, which requires
periodic recharging. This is known as refreshing. A refresh
window (tREFW) is usually of 64 ms. A refresh instruction
(tREFI) is issued in a smaller intervals of 7.8 µs. In one tREFI,
a few rows are scheduled for refreshing, which consumes tRFC
time. If a refresh instruction (tREFI) is sent to a row at time
t = 0, the same row is refreshed again after tREFW time.

B. Retention Time and Variations

The refresh window (tREFW) of a modern-day DRAM is
set at 64 ms in normal temperature and 32 ms in case of higher
operating temperature (≥ 85◦C) [7]. This defines the worst-
case value for the entire DRAM chip. However, not all DRAM
cells require recharging at 64 ms [4], [5] as there only exist
a few rows which have retention time less than equal to 64
ms. There have been several works previously done in order
to identify such weak rows [8], [11]. Most of these profiling
techniques would pass a stream of data patterns within a
wide range of operating temperatures to pinpoint DRAM cells
failing to meet a set retention time threshold. Liu et. al [8]
concluded that there exist approximately 1000 weak rows in
a 32 GB DRAM device. Yet, even for this small fraction of
rows, a DDR4 DRAM device is uniformly refreshed at 64 ms
in normal working temperature. Hassan et al. [5] calculated
that the bit error rate (BER) of the 4X refresh window DRAM
device (tREFW = 256 ms) is 4 × 10−9. Further, the authors
gave the probability of the presence of a weak cell in a row
as:

Pweak row = 1− (1−BER)Ncells per row (1)

Here, Ncells per row is the number of weak cells per row.
Clearly, the number of weak rows present in a DRAM bank
would be very small.

III. METHODOLOGY

A. Overview

LRAR is a hardware based technique. It has three distinct
operating modes. The first is a deterministic mode (DM),

15 bit
comparator MUX

Memory Controller
Row Counter

Proposed LRAR Block

15 bit storage unit

8 units

2 bit counter

Refresh Instruction

WRT
15 bit storage unit

(a) Deterministic Mode

7 bit
comp.

MUX

Memory Controller
Row Counter

Proposed LRAR Block

7 bit storage

8 units

2 bit counter

Refresh Instruction7 bit
comp.

WRT
7 bit storage 7 bit storage 7 bit storage

(b) Approximate Mode

Fig. 1: Proposed Operating Modes of LRAR

which is depicted in Figure 1. In DM, we keep a space
equivalent to store addresses of a fixed number of weak rows.
We call this storage space as weak row table (WRT). The
probability of such weak rows are minimal, and, are unlikely
to change [4], [5]. In order to include addresses of VRT
affected rows, we use LRAR’s approximate mode. In this, we
cluster VRT affected rows into contiguous sets of 256 rows.
To accommodate space to store these sets, we only keep 7
MSBs of the starting address of the set. Rest of the rows of
the set are computed by the memory controller. Thus, storing
only 7 bits, a large number of rows are included within the
set. The final operation mode is for temperature scaling. We
either store these rows completely in the fixed size space we
have, or, we use approximation to those such rows as well.

All the proposed modifications are done in the memory
controller (MC). Alongside WRT, which is maintained per
bank, we also maintain a 2-bit global flag on the MC. The
number of WRTs and 2-bit flags is equal to the number of
ranks. VRT affected rows are simulated according to a random
distribution. We also require comparators to assert whether an
incoming row refresh request lies in a WRT. The number of
comparators required is equal to the number of weak rows
maintained per WRT. The overall hardware area, power and
delay overheads incurred due to these changes are discussed
in detail in Section V-D.

In this section, we explain each of these operating modes
along with its core components.

B. Deterministic Mode (DM)

The WRT’s size is the key in DM. The probability of
presence of weak rows is 2.3×10−4, which is calculated from
previous findings described in Section II-B. Using this, we find
that roughly 7.8125 rows are weak in a DRAM bank, which
we round off to 8. We keep twice this size for (a) temperature
scaling, and, (b) ensuring a longer lifetime of the device. Wang
et al. [3] has shown that by making the refresh counter in the
MC transparent would allow a refreshing mechanism based on
retention time which also makes it compatible with JEDEC
standards. Hence, we use those previously proposed concepts,

including skip refreshing. However, the implementation of skip
refresh in LRAR is different, in which, the same accounts
for the time taken for checking the presence of a weak row
address in WRT. Figure 1(a) represents DM of LRAR. The
entire proposed module is implemented within the memory
controller. As mentioned earlier, we maintain a 2 bit global flag
which increments after every 64 ms and resets at an interval
of 256 ms. A complete refresh would be performed when the
flag bits are 00, whose state is selected using a multiplexer.
We consider any row whose retention time is less than 256 ms
as a weak row, and such rows are refreshed in 64 ms. Its row
address (using 15 bits) is kept in the WRT. While incrementing
the MC’s row counter, if a weak row is encountered and the
2-bit counter state is not 00, a refresh for that particular row
is issued. A 15 bit comparator is present for each weak row
address in the WRT, totalling up to 16 such comparators.
For all other cases, we skip its scheduled refresh. The time
imposed by the comparator circuit is equivalent to skip refresh
time.

C. Approximate Mode (AM)

In order to include VRT affected rows, it is essential to
find an average placements of VRT rows. We have considered
random distributions of VRT rows in a DRAM device for
103 cases. The average placement of VRT rows is considered
for LRAR’s AM mode. AM uses the basics of approximate
storage, where, it only stores the 7 MSB of the initial address
of a cluster. A cluster in this case is a set of contiguous
row addresses. The key change from DM mode is that the
comparator length is halved and such number of comparators
are increased by two. If MSB of the row counter of the MC
matches with the partially stored row address in the WRT, a
refresh is issued. Figure 1(b) depicts the proposed AM mode.

The drawback of AM mode is the inclusion of false
positives. However, considering VRT, which is completely
random [10], a deterministic mode for the same will pose
an enormous overhead. The set of VRT rows changes in
intervals as small as 15 minutes [10]. Profiling the device after
every 15 minutes will impose a substantial time penalty for a

program. Works like AVATAR claimed that the conventional
ECC present in a DRAM device has the capability to correct
such errors, but, not all errors can be corrected by the same.
Hence LRAR, if operated in AM mode, can correct most
of such VRT affected rows. Since AM is probabilistic, the
model also relies on the conventional ECC to correct rows
not included under AM refreshing.

It has been mentioned in prior works [4], [5] that it is
unlikely that the set of permanent weak rows will change
throughout the lifetime of a DRAM device. Even in this
unlikely scenario, AM can ensure age scaling of the device
with both performance and energy benefits.

D. Temperature Scaling
Previously, we have mentioned that we have maintained

twice the number of calculated weak rows in order to accom-
modate space for newly emerged weak rows due to temper-
ature scaling. Retention time of a DRAM device is affected
by temperature [4]. Temperature scaling works in a manner
similar to DM due to having additional space. However, if
the number of weak rows under temperature scaling becomes
more than the amount of available space, the refresh model
resorts to AM, ensuring coverage of all such affected rows.

In all aforementioned modes of LRAR, the key observation
is the number of refresh operations saved. This minimizes
the blocking time previously imposed on the system due to
refreshing. The device is blocked for tRFC time when one
tREFI command is issued. Now, the amount of time spent in
one tREFI reduces, as the number of refreshes reduces. This
provides a direct benefit of performance gain. Moreover, due
to a reduced number of refreshes, we further obtain 11.5%
benefit in terms of energy consumption as discussed in detail
in Section V-B.

IV. EVALUATION

In this section, we briefly discuss the evaluation platform
used and the workloads that we have considered to evaluate our
proposed refreshing model. We have used DRAMsim3 [12],
a cycle accurate DRAM simulator. Major modifications are
done in the memory controller of the simulator reflecting our
proposal. The specification of the DDR4 memory that we
simulated are given in Table I. For evaluating our results, we
have selected a total of 23 benchmarks of varying workload
to run our experiments. We used 15 benchmarks from SPEC
CPU® 2006 benchmark suite [13] and 8 benchmarks from the
PARSEC benchmark suite [14] for our experimentation.

A. Experiment Details
1) Experiments on Analyzing Timing Parameters: Mini-

mizing the blocking time owing to the refreshing of the
DRAM device will allow the DRAM device to operate in
an unhindered manner for a longer period of time. Execution
times of programs are reduced due to minimizing the blocking
time of the DRAM device. We have made a comparative
analysis of both the modes of LRAR with other refreshing
techniques including the conventional DRAM device (baseline
case), RAIDR [4] and an ideal no-refreshing DRAM device.

Simulation Parameter Specification (DDR4)
Total Capacity 8 GB
Number of Ranks 2
Number of Bankgroups per
Rank

4

Number of Banks per
Bankgroup

4

Number of Rows/Banks 65536
Wordwidth 16
Memory Frequency 3200Mhz
tREFI 12480 ns
tRFC 560 ns

TABLE I: DDR4 Simulation Parameters

2) Experiments on Analyzing Energy Consumption: This
is a straightforward experiment in which we aim at collecting
the amount of energy savings that we obtain. We collected the
required energy statistics using the ‘drampower’ component
of the simulator DRAMsim3.

3) Overhead: We classify the overheads of the proposed
technique into area, storage, power and delay. We have used
Synopsys Design Compiler with 45 nm technology node for
analyzing area, delay and power on a global operating voltage
of 1.1 V. The model was described using Verilog HDL.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Timing Analysis

The reduced number of refreshes results in a performance
gain. This is particularly due to the effective blocking time
getting reduced. The blocking time gets reduced as at each
instance of a refresh being skipped, we added the lookup
time for determining a weak row, i.e. 0.36 ns, to the blocking
time instead of an approximate 22 ns. This gives us a saving
of 21.64 ns per row refresh skipped. This is also reflected
in LRAR-AM, where there are more number of rows to
refresh than DM, but there also exists a significant set of
rows to be skipped. Hence, as the number of skipped rows
is more than refreshed rows in both DM and AM, overall,
we gain a positive time savings during execution. Overall,
on average, this has resulted in 9.4% decrease in the total
blocking time during the simulation, when LRAR is used
in DM mode. Figure 2 represents the normalized execution
time of a program with respect to LRAR’s DM mode. The
other cases for comparison includes a conventional DDR4
DRAM device (DDR4), LRAR-AM, RAIDR and no refresh
(NR) cases. LRAR has a lower execution time than RAIDR by
3% on average. In the memory intensive benchmark bwaves,
bzip2, leslie3d, libquantum, mcf and zeusmp, we observed the
maximum decrease of 9.5% in terms of execution time. In case
of AM, which shows a positive gain of 5% on average, over
the conventional DDR4 DRAM device’s case while including
most of the VRT affected rows. Since LRAR-AM operates on
a larger set of rows with the objective to include as many VRT
affected rows as possible, the execution time of the same is
higher than RAIDR in most cases. We also have to note the
fact that RAIDR do not include any mechanism to incorporate
VRT affected rows.

Fig. 2: Normalized Execution Time of Programs

Fig. 3: Refresh Energy Consumption

B. Energy Analysis

As our proposed method, DM, significantly decreases the
number of rows refreshes required, consequently refresh en-
ergy also gets reduced. For the simulated DDR4 memory in
DM mode, we obtain an average of 73.6% savings. In some of
the memory-intensive benchmarks like bwaves, bzip2, leslie3d,
libquantum, mcf and zeusmp, our proposed model can reduce
refresh energy of 69.6% on average. Compute intensive bench-
marks from SPEC CPU2006 suite like omnetpp achieves up
to 70.6% refresh energy savings. PARSEC benchmarks yield
an average refresh energy savings of 74.7%. The reduction
in total energy consumption of the system averages at 11.5%.
Figure 3 represents refresh energy consumption of the memory
system in 4 cases, including conventional (DDR4), LRAR-
AM, RAIDR and LRAR-DM cases. LRAR achieves a higher
percentage in energy savings due to the exclusion of false
positive cases, unlike in RAIDR. The average energy savings
is limited to a difference of 0.47% in comparison to RAIDR.
The total amount of energy consumed by the system is also
affected, as the number of refresh instructions are lesser. On
average, LRAR saves 11.5% of the total DRAM’s energy. On
the other hand, LRAR’s AM mode, which includes most VRT
affected rows, can save refresh energy of the system by an
average of 53.6%, while saving the memory system’s total
energy by 8.7% on average.

C. Analysis on AM

While both DM and AM can give benefits in terms of exe-
cution time and energy savings, however, our main objective

in AM is to include as many VRT rows as possible. Inclusion
of a modern day DRAM device is likely to be better reflected
using AM. This is because of VRT affected rows. Our gains
in terms of time and energy in case of AM is lower than DM
and RAIDR due to the fact that AM attempts to refresh a
large number of rows compared to the other two. At the same
time, the other two aforementioned techniques, however, do
not include VRT affected rows. A few of such rows, included
in AM, may be false positives. However, at the same time,
this is done in order to ensure that most VRT affected rows
are included for refreshing in order to prevent any data loss.
Simple profiling techniques are renders ineffective for profiling
VRT rows as the set of such rows can change frequently,
imposing a hefty penalty on the profiling mechanism.

The 7 MSBs of the initial row address acts like a cluster as
the rest 8 bits are computed within the MC’s row counter. One
such set contains 256 rows. We have considered random dis-
tribution to analyze the extent of VRT affected rows. Figure 4
shows the average positions of VRT affected rows in 103 cases.
We use this information to find 32 such clusters as our space
limitation restricts us to store up to 32 approximate clusters.
We have used K-Means and simple density based clustering.
We have considered 25% of rows in a DRAM bank to be
VRT affected. In this experiment, we have tested for another
103 cases and found that on average, 48.2% of VRT affected
rows (12.05% of total rows of the DRAM bank) are included
in those clusters when clusters are computed using density
based clustering. K-Means clustering, on the other hand, shows
an inclusion probability of 34%. As mentioned before, the

Fig. 4: Distribution of VRT rows

correctness of other rows is relied upon the conventional ECC.
Furthermore, AVATAR has shown that approximately 31,798
unique rows are affected by VRT in a DRAM rank. In a
typical scenario, a DDR4 DRAM device contains 8 banks
in a DRAM rank, and, each DRAM bank contains 32,768
rows. This roughly translates to the fact that around 12.1%
of rows in a DRAM bank are affected by VRT. Our AM
model marginally includes a similar fraction of such rows,
as approximately 27 additional rows rely on the conventional
ECC.

D. Overhead

We have further divided overhead into 4 categories for a
better understanding of the proposed model. In this subsection,
we explain each of them.

1) Area: The basic design, which includes a set of 16 weak
row addresses, refreshing logic and additional wire requires a
total area of 7,421.28 µm2. In other words, for one DRAM
bank which contains 32,768 rows, we require an additional
area of 7,421.28 µm2. This roughly translates to the fact that
LRAR only consumes 0.0018% of a 400 mm2 die, which is
negligible.

2) Storage: Storage overhead is considered in storing the
weak rows in the DRAM device. One row address requires 15
bits to store. We are maintaining a WRT of a size equivalent
to keep 16 such row addresses. Alongside, there is also a
requirement of additional 2 bits. Therefore, our model requires
30.25 bytes per DRAM bank. Our storage requirements are
merely 1.8×10−5 % of a rank. Likewise, for a 32 GB DRAM
device, our model requires 3.75 KB bytes only.

3) Delay: We have already explained in Section III that the
delay time incurred in comparison is included in skip refresh
timings. Our synthesis results gave a time requirement of 0.36
ns. Note that in all our simulation, discussed in Section V-A
and Section V-B, we have rounded the number to 1 ns. Savings
in terms of blocking time, faster execution of programs and
energy requirements is primarily reflected due to skipping of
refreshes.

4) Power: There is a requirement of combinational power
for the proposed model which is 0.98 mW of power.

VI. RELATED WORKS

DRAM devices are a major power consumer in the system
stack [2]. Hence, there has been a large number of research

works done toward reducing memory power consumption [2],
[4], [5], [15]. Among this, refresh power is slowly becoming
a major power consumer since the density of DRAM devices
is increasing. It is predicted that refreshes will soon consume
up to 40% of DRAM’s total power in the near future [3]. One
of the key observations behind retention aware refreshing was
proposed by Liu et al. [4], where the authors stated that not all
DRAM rows require refreshing at 64 ms. The tREFW time,
i.e. 64 ms, is defined as a standard as it covers the worst case
condition. The same authors proposed one of the best known
retention aware refreshing technique called RAIDR, where the
authors used bloom filters to store information of retention
times of all rows, and, refresh a row at its required interval
only. Hassan et al. [5] proposed a DRAM substrate, which
acts as a cache to the main DRAM device. They identified that
there exist approximately 1000 weak rows in a 32 GB DRAM
device which has retention time less than 256 ms. Hence,
for each DRAM sub-array, the authors added 8 additional
row space, where weak rows can be mapped and the sub-
array can be refreshed in 256 ms. A refresh mechanism based
on timing window was proposed by Shin et al. [16], where
it eliminates a DRAM refresh operations of captured rows
in a pre-defined timing window. Wang et al. [15] extended
RAIDR’s design to make it compatible with JEDEC’s auto
refreshing standard. Clustering based DRAM profiling has
been proposed by Sharifi et al. [17].

Approximation on DRAM storage and refreshing has
emerged as a new technique for saving energy in DRAM
devices. While allocating memory space, techniques like
Flikker [18] allows the programmer to specify critical and non-
critical data. While refreshing, the former segment is refreshed
at regular intervals, however, the latter is not. This technique
has been extended by Lucas et al. [19], where the authors
utilized a non-uniform refresh of multiple DRAM chips.

VII. CONCLUSION

In this work, we have proposed a lightweight retention
aware refresh (LRAR) mechanism for DRAM devices. LRAR
is able to significantly reduce the number of refresh operations
by identifying the weak rows deterministically and skipping
the additional refreshes based on the different retention time of
rows. Its implementation requires very minuscule modification
in the memory controller without any major changes in the
DRAM operation itself.

There are two operating modes of LRAR: DM and AM. In
majority of cases, both of these operating modes ensure gains
in terms of time and energy irrespective of the application
being either compute or memory intensive. In DM, results in
energy savings of 11.5% by reducing refresh energy. Along
with that, it also gives us a performance gain of 9.4% by
reducing the effective blocking time. All these gains are
achieved with overheads which are minimal as compared to
other state of the art methods as pointed out in Section V-D.
LRAR, when operated in AM, gives a probability of 48.2%
of including a VRT affected row, when 25% of total rows of
the DRAM are assumed to be VRT affected.

We conclude that LRAR can effectively reduce energy con-
sumption along with giving performance gains with minimal
overhead in current and future DRAM systems. In the future,
we plan on investigating better clustering methods for AM in
order to include a larger section of VRT affected rows while
minimizing false positives.

REFERENCES

[1] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging NVM: A
Survey on Architectural Integration and Research Challenges,” ACM
Trans. Des. Autom. Electron. Syst., vol. 23, no. 2, Nov. 2017. [Online].
Available: https://doi.org/10.1145/3131848

[2] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatter-
jee, A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu,
“Understanding reduced-voltage operation in modern dram devices:
Experimental characterization, analysis, and mechanisms,” Proc. ACM
Meas. Anal. Comput. Syst., 2017.

[3] I. Bhati, Z. Chishti, S. Lu, and B. Jacob, “Flexible auto-refresh:
Enabling scalable and energy-efficient dram refresh reductions,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015, pp. 235–246.

[4] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” in 39th IEEE ISCA, 2012.

[5] H. Hassan, M. Patel, J. S. Kim, A. G. Yaglikci, N. Vijaykumar, N. M.
Ghiasi, S. Ghose, and O. Mutlu, “Crow: A low-cost substrate for improv-
ing dram performance, energy efficiency, and reliability,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 129–142.

[6] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3d die-stacked
drams,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 40. USA: IEEE Com-
puter Society, 2007, p. 134–145.

[7] Micron Technology,, “DDR4 SDRAM,” Tech. Rep. MT40A2G4,
MT40A1G8, MT40A512M16, 2015.

[8] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern dram devices: Implications
for retention time profiling mechanisms,” SIGARCH Comput. Archit.
News, 2013.

[9] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi,
G. Y. Jin, Y. H. Son, H. Cho, J. H. Ahn, and N. S. Kim, “Defect Analysis
and Cost-Effective Resilience Architecture for Future DRAM Devices,”
in IEEE HPCA, 2017, pp. 61–72.

[10] M. K. Qureshi, D. Kim, S. Khan, P. J. Nair, and O. Mutlu, “Avatar:
A variable-retention-time (vrt) aware refresh for dram systems,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2015, pp. 427–437.

[11] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu,
“The efficacy of error mitigation techniques for dram retention failures:
A comparative experimental study,” SIGMETRICS Perform. Eval. Rev.,
2014.

[12] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3:
A cycle-accurate, thermal-capable dram simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

[13] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, p. 1–17, Sep. 2006. [Online].
Available: https://doi.org/10.1145/1186736.1186737

[14] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[15] J. Wang, X. Dong, and Y. Xie, “Proactivedram: A dram-initiated reten-
tion management scheme,” in 2014 IEEE 32nd International Conference
on Computer Design (ICCD), 2014, pp. 22–27.

[16] H. H. Shin, H. Seo, B. Lee, J. Kim, and E. Chung, “Timing window
wiper: A new scheme for reducing refresh power of dram,” in 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
2017, pp. 133–138.

[17] R. Sharifi and Z. Navabi, “Online profiling for cluster-specific variable
rate refreshing in high-density dram systems,” in 2017 22nd IEEE
European Test Symposium (ETS), 2017, pp. 1–6.

[18] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
dram refresh-power through critical data partitioning,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: Association for Computing Machinery, 2011, p.
213–224. [Online]. Available: https://doi.org/10.1145/1950365.1950391

[19] J. Lucas, M. Alvarez-Mesa, M. Andersch, and B. Juurlink, “Sparkk :
Quality-scalable approximate storage in dram,” 2014.

