
Application of Machine Learning in Hardware
Trojan Detection

Shamik Kundu Xingyu Meng Kanad Basu
Department of Electrical and Computer Engineering, University of Texas at Dallas

{shamik.kundu, xingyu.meng, kanad.basu}@utdallas.edu

Abstract—Hardware Trojans (HTs), maliciously inserted in
an integrated circuit during untrusted design or fabrication
process pose critical threat to the system security. With the
ever increasing capabilities of an adversary to subvert the
system during run-time, it is imperative to detect the manifested
Trojans in order to reinforce the trust in hardware. In this
regard, Machine Learning (ML) algorithms, with their intrinsic
capability to execute feature engineering at high learning rates,
are emerging as promising candidates to be utilized by system
defenders. In this paper, we explore Trojan detection mechanisms
that are based on ML, and thereby investigate the prowess of the
ML algorithms in bolstering system security. Furthermore, we
analyze the efficiency of each proposed Trojan detection strategy
based on the underlying ML algorithm. Finally, we underline
some problems with existing Trojan detection approaches and
discuss future research in the interest of improved performance
of the employed ML algorithms, thus aiding in enhancing the
intended hardware security.

Index Terms—Trojan Detection, Machine Learning, Security.

I. INTRODUCTION

The ever increasing proliferation of high-functioning hard-
ware devices has led to a reduction in time-to-market of
the large-scale Integrated Circuits (ICs). This has compelled
the hardware vendors to incorporate third party intellectual
properties and outsource the fabrication process [1]. As a re-
sult, unspecified identities get involved in the IC development
cycle, thereby creating opportunities of Hardware Trojan (HT)
intrusion in the circuit. A HT is a covert malicious alteration or
inclusion that is aimed at modifying the intended function of
an IC, or causing it to perform malicious functionalities. These
Trojans are activated under a specific set of circumstances,
as programmed by the attacker, thereby creating backdoor
for sensitive information leakage, performance degradation
or ensuing denial of service in critical applications [2]. For
example, it was believed that, in 2007, a backdoor, built into
a Syrian radar system was responsible for the system’s failure
[3]. With the fabless design trend in today’s semiconductor
industry, such covert Trojans pose serious security threats
to highly sensitive industries including military and aviation,
apart from consumer grade electronic devices. This imposes
an urgent need in detecting the manifestation of Trojans and
validating the trust in such commodity and sensitive hardware.

In this direction, several researchers have proposed Trojan
detection mechanisms using thermal imaging, power moni-
toring and side channel analysis [2], [4]. However, with the
increase in attacker’s resources, adversaries are advancing the
HT capabilities to trigger and unfold new attack dimensions.
Therefore, detection techniques should be efficient in suc-

cessfully identifying such unexpected attacks. Machine Learn-
ing (ML) algorithms, with their sophisticated mathematical
modelling to process data with high complexity parameters,
are being utilized to augment the performance of traditional
Trojan detection algorithms [5]. The past decade has seen
a meteoric rise of ML as the algorithm of choice for a
host of popular applications belonging to the domains of
computer vision, multimedia processing, graph, analytics, and
search [6], [7]. This prowess of ML is being harnessed to
bolster the domain of hardware security, where supervised and
unsupervised models are trained on unique circuit signatures
to detect potential attacks, as outlined in Figure 1. This paper
explores such state-of-the-art defense techniques that apply
ML for Trojan detection.

Machine Learning
Algorithm

Trained Classifier
Model

Trojan-FreeTrojan-Inserted

Training Data

Testing Data

Trained Classifier
Model

Simulation ICs

Fabricated ICs

Trojan-Free ICs

Trojan-Inserted ICs

Trojan Known

Trojan Unknown

Fig. 1: Trojan Detection Flow Diagram.

The rest of the paper is organized as follows. Section II out-
lines the basics of HT, their detection strategies and traditional
ML algorithms to be employed for the same. The popular ML-
based detection techniques have been presented in Section III,
and their performance have been demonstrated in Section IV.
Finally, Section V concludes the paper.

II. BACKGROUND

A. Hardware Trojans

In order to analyze the vulnerability of the system, existing
research have developed various HTs. In general, a Trojan
consists of two parts: trigger and payload. The trigger mon-
itors various signals or a series of events in the circuit. The
payload usually taps signals from the Trojan-free circuit and
the output of the trigger. Once the trigger detects an expected
event, the payload is activated to perform malicious behavior.

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 414 22nd Int'l Symposium on Quality Electronic Design

The payload remains inactive most of the time in order
to avoid detection, and is only executed upon activating the
trigger. A trigger can either remain always on, or can be
triggered internally based on time and physical conditions,
or externally, depending or an user input or a component
output. When the trigger activates the payload, it can change
the functionality of the device, degrade the performance,
leak sensitive information or even result in denial of service
[8]. The vulnerable locations of a Trojan manifestation in a
circuit include processor, memory, input/output, power supply
or clock grid. Such Trojans can be inserted by unspecified
identities in the IC during specification, design, fabrication,
testing or packaging phase of the development cycle [9].

B. Hardware Trojan Detection
In order to perform Trojan detection in an IC, two different

scenarios may be prevalent — one that considers the avail-
ability of golden chips, and another that does not have access
to the Trojan-free golden chips [10]. In either circumstances,
detection is performed by classifying the features obtained
from one of the following three sources, as shown in Figure 2.

1) On-chip Sensors Data: As the HTs are triggered in the
circuit, their impact is manifested as inconsistencies in the
low-level microarchitectural features such as hardware perfor-
mance counters, data streams, electrical current measurements
and power consumption traces. Features extracted from these
on-chip sensors are then classified to efficiently identify the
HTs in the circuit [11].

2) Netlist Data: In this method, a static analysis of the
gate-level netlist is performed to extract a set of underlying
features. These features majorly include a description of the
logic fan-in cone, the number of gate levels from the output
of a flip flop to the target net, the number of gate levels from
the target net to the input of any flip flop and the number
of gate-levels between the primary input to the target net and
from the target net to the primary output of the design. These
features are provided as input to a classifier to identify whether
a particular net belongs to a Trojan-infected circuit [12].

3) On-chip Traffic Data: In an IC with multi-core commu-
nication system, Trojan-infected routers can divert the commu-
nication packets to destinations other than the intended desti-
nation, thereby leaking out sensitive information or launching
denial-of-service attacks on the cores in the system. Trojans
can also spoof a core in the circuit, which prevents other cores
to access the packets delivered to the spoofed one. Hence,
features extracted from this on-chip traffic can be efficiently
classified to detect the activation of such Trojans [13].

Extracted Data
from ICs

On-chip Sensor
Data Netlist Data On-chip Traffic

Data

ML Classifiers

Fig. 2: Training Data Selection.

C. Machine Learning Algorithms

After the collection of meaningful data based on hardware
behavioral analysis, efficient ML algorithms are trained on the
dataset to detect the injection of Trojans in the circuit. Relevant
feature selection will aid in improving the performance of Tro-
jan detection, as well as implementing the detection framework
on hardware with low overhead. ML can be majorly classified
into two domains — supervised and unsupervised learning.
Supervised learning is the task of learning a function that
maps an input to an output based on example input-output
pairs. It infers a function from labeled training data consisting
of a set of training examples. Unsupervised learning, on the
other hand, looks for previously undetected patterns in a data
when pre-existing labels for the target classes are not available.
Among a plethora of such ML models, the most widely
adopted ones in the domain of HT detection are outlined in
this section.

1) Support Vector Machine: Support Vector Machine
(SVM) is a supervised learning model that efficiently classifies
the incoming data with the help of a hyperplane [14], as
represented in Figure 3a. The regularization parameter in SVM
classifier scales down the error margin for improved perfor-
mance on large data. There are different types of kernels used
with SVMs, the most common of them being Radial Basis
Function (RBF) kernel. The kernel dependent hyperparameters
need to be fine tuned in order to extract optimum performance
from the SVM classifier. One-class SVM, a category of SVM,
uses the data from only one class to train the model [15].

2) Logistic Regression: Logistic Regression (LR) follows
a supervised learning scheme, where the binary dependent
variables are modeled along a logistic function. Since the
function is sigmoid in nature, it follows an ‘S’ shape, as
shown in Figure 3b. The LR classifier determines the optimal
coefficient values from the training data through maximum-
likelihood estimation approach [16].

3) K-Nearest Neighbors: K-Nearest Neighbor (KNN) is
a supervised learning model that leverages identical data
points that are closer to each other. Depending on the nearest
neighbor (K) parameter value specified, K neighbors will be
identified on the basis of distance metric from a specific query
point. The KNN classifier furnishes the value with the most
occurrence among the K labels as the output of the model [17].
Figure 3c outlines a KNN classification model.

4) K-means Clustering: K-means clustering is the most
popular unsupervised machine learning algorithm that aims
to partition n observations into K clusters, as demonstrated in
Figure 3d. The K-means algorithm defines K cluster centroids,
and then allocates every data point to the nearest cluster, while
keeping the centroids as small as possible [18].

5) Decision Tree and Random Forest: Decision Tree (DT)
is a supervised learning model that has a tree structure with
nodes and edges [19]. The DT classifier utilizes the nodes of
the tree to test incoming values. Different learning algorithms
with different branch splitting criteria, for example, CART
[20], ID3 [19] or C4.5 [21] can be used for training the
DT classifier. The Random Forest (RF) classifier consists
of multiple individual Decision Trees that perform as an

(a) (b) (c) (d)

(e) (f) (g)

Feature 1 Feature 1 Feature 1

Fe
at

ur
e

2

Fe
at

ur
e

2

Fe
at

ur
e

2

Negative ClassPositive Class

Negative

Positive

SVM Logistic Regression KNN K-means Clustering

Random Forest Half-Space Tree Neural Network

Independent Valuable

Fig. 3: Machine Learning Algorithms: (a) SVM (b) Logistic Regression (c) KNN (d) K-means Clustering (e) Random Forest
(f) Half-Space Tree and (g) Neural Network.

ensemble, as shown in Figure 3e [22]. Each Decision Tree
in the forest will furnish an output class, and the class with
the highest number of predictions will furnish the output of
the RF classifier.

6) Half-Space Trees: Half Space (HS) Trees are composed
of an ensemble of binary trees that detect anomalies in data
streams. As shown in Figure 3f, each HS-Tree partitions the
dataspace into several windows and makes predictions based
on the number of data points in each window [23]. For
anomaly detection, most points should fall within the same
window and those which do not are predicted to be anomalies.

7) Neural Networks: A Neural Network (NN) consists of
an input layer, an output layer, and a number of hidden layers
in between them. Neurons, having weighted input connections,
a transfer function to combine inputs, and an output connection
form the basic computational units in each layer [24]. During
training, the back-propagation method updates the synaptic
weights on the basis of a loss function, to obtain the optimum
performance from the NN architecture. Figure 3g represents a
neural network with two hidden layers.

III. TROJAN DETECTION WITH MACHINE LEARNING

The capability of ML has been exploited to bolster the
efficiency of traditional HT detection schemes. Existing re-
search have proposed Trojan detection techniques for both
golden chip-based and golden chip-free scenarios, that utilize
the discussed ML algorithms.

A. Golden Chip-based Detection
The inconsistencies in parametric measurements as a result

of an activated Trojan have been leveraged by ML classifiers
for trust evaluation in a fabricated IC. A general framework
for Trojan detection has been proposed in [25], where on-chip
measurement acquisition sensors capture the electrical current
traces in the circuit. The current is then converted to DC
voltage to be classified by an one-class analog neural network

to identify the untrusted circuit functionality. Trojans inserted
during fabrication of an IC have been efficiently detected by
analyzing the leakage current through a Bayesian inference-
based technique, that is used to calibrate the process variation
[11]. The power consumption traces in frequency domain
are used to identify Trojans with a two-class SVM [26].
Similarly, relevant features have been extracted from power
consumption traces and classified with a neural network to
detect an activated Trojan in the circuit [27]. A run-time
approach is proposed to detect HT in microprocessor cores
by classifying performance counter data streams (cache and
Translation Lookaside Buffer (TLB) miss rate) with HS-trees
[28]. Along with performance counters, data from transmission
power is also acquired to classify Trojans with an one-class
SVM with RBF kernel [29].

HT in a circuit can also be identified by classifying all the
nets in a netlist into Trojan and benign. In order to achieve
this, [12] extracted 51 Trojan features from Trojan nets, and
then identified the best set of 8 unique features to provide as
input to the Random Forest classifier. The features include:
(1) the logic fan-in gate up to 5-levels; (2) the number of flip-
flops up to 5-levels away from the input and output of the
target net; (3) the level of the nearest flip-flop to the input and
output of the target net; (4) the number of multiplexers up to 5-
levels away from the input and output of the target net; (5) the
level of the nearest multiplexer to the input and output of the
target net; (6) the number of m-level-loops where m is up to 5
from the input and output of the target net; (7) the number of
nets that are assigned a constant value of 0 or 1 up to 5-levels
away from the target net; and (8) the minimum number of gate-
levels between the primary input to the target net and from the
target net to the primary output in the design. Similar to [12],
features such as logic gate input number, flip-flop input/output
and primary input/output of gate-level netlist are extracted to
perform an one-class SVM classification [30]. A multi-layer

neural network is also applied on gate-level netlist to classify
the Trojan-inserted design [31]. 11 features of the netlist are
identified and used to train the model to detect the Trojan net
manifested in the design.

Communication attacks triggered by HTs, such as core
address spoofing, traffic diversion, route looping attack, can
provide easy access to sensitive information or disrupt the
functionality in many-core systems. In order to defend against
such attacks, a run-time Trojan detection architecture for a
custom many-core based on ML have been proposed in [13].
The dataset is generated based on the router behavior under
normal and Trojan triggered settings. Features extracted from
this on-chip traffic in both golden and Trojan-infected many-
core chips are used to train SVM classifiers. Similar to [13],
these features were utilized to detect HTs with the aid of
supervised ML models, K-nearest neighbor (KNN), linear
regression and Decision Tree [32], and unsupervised learning
algorithms K-means clustering, Estimation Maximization, and
hierarchical clustering [33]. In addition, these models can be
updated to include the latest attacks with Modified Balanced
Winnow (MBW) algorithm, which provide improved coverage
against various types of Trojans [34].

B. Golden Chip-free Detection
Since the availability of golden chips is not guaranteed in all

scenarios, existing research has demonstrated several attempts
that do not require training data from Trojan-free circuits.
In [35], multiple ML models such as Naive Bayes, Random
forests, SVM, and logistic regression are applied to classify
the transient power supply current data samples obtained from
Monte Carlo simulations of ICs. The detection accuracy of
each classifier is summarized and paired with the other clas-
sifiers to provide a higher coverage and accuracy on all types
of Trojans. Statistical side channel fingerprinting is another
popular HT detection method, wherein a parametric signature
of a chip is collected and compared to a trusted region in a
multi-dimensional space. This trusted region, comprising of
side channel signal data, is developed through a combination
of a trusted simulation model, measurements from Process
Control Monitors (PCMs) which are typically present on a die,
and advanced statistical tail modeling techniques. This signal
data can be utilized to train an one-class SVM to classify a
Trojan-inserted IC without having a fabricated chip [36].

A reference-free HT detection technique has been proposed
in [37], that analyzes the controllability and observability
in a gate-level netlist. An unsupervised k-means clustering
analysis is utilized to demonstrate that the controllability and
observability characteristics of Trojan gates furnish signif-
icant inter-cluster distance from those of genuine gates in
a Trojan-inserted circuit, such that Trojan gates are easily
distinguishable. An Optics density-based clustering learning
is also proposed to detect Trojan in a netlist by classifying
weakly correlated nodes or functionally isolated gates in a
dendogram graph corresponding to the circuit under test [38].

IV. PERFORMANCE EVALUATION

In this section, the performance of each state-of-the-art
Trojan detection technique is evaluated, as outlined in Table I.

The evaluation metrics used to assess performances for each
method introduced in Section III are discussed as follows:

a) Golden Design Required: This column represents
whether a Trojan detection scheme is required to provide
labelled training data for the machine learning model. Since
the availability of golden design is not guaranteed, this might
lead to lack of labelled data to the models. It enables the model
to adopt a supervised or unsupervised learning approach.
The unsupervised model might have a lower accuracy than
supervised one, but can be used in more restricted situations.

b) Accuracy demonstrates the ratio of the testing data
that has been correctly predicted by the model to the total
testing data set, which serves as a major factor to evaluate the
effectiveness and reliability of the ML model. The accuracy
for a Trojan detection scheme can be represented as:

Accuracy =
No. of (TP + TN)

No. of (FP + FN + TP + TN)
(1)

where, TP is True Positive, TN is True Negative, FP is
False Positive, and FN is False Negative. For classifying an
IC between Trojan (positive class) and Trojan-free (negative
class), a True Positive is a Trojan correctly labeled Trojan
while an application correctly labeled Trojan-free is a True
Negative. A False Positive is a Trojan-free application incor-
rectly classified as Trojan, and a False Negative is a Trojan
incorrectly classified Trojan-free.

c) True Positive Rate represents the efficiency of the
model to correctly predict the Trojan-inserted design. A correct
prediction of the HT will prevent the chip from performing
unprecedented functionalities. A higher ratio of this means
that the ML model is capable of detecting more number of
Trojans-infected ICs, thereby bolstering the system security.
The true positive rate can be represented as:

True Positive Rate =
No. of TP

No. of (TP + FN)
(2)

d) False Negative Rate outlines the ratio of the incorrect
classification of a Trojan into a Trojan-free design. A false
negative prediction will ignore the Trojan-inserted design,
causing unprecedented functionalities. This ratio should be
ideally as low as possible to avoid misprediction of a malicious
design. The false negative rate can be represented as:

False Negative Rate =
No. of FN

No. of (FN + TP)
(3)

e) Training Features demonstrate the data features that are
required by the ML model for training the network. These
features, provided as input to the model are indicative of the
stage of the development cycle in which the Trojan detection
scheme can be applied. A scheme that can be applied in earlier
stages will require less resource and time to detect the Trojan
design, since it eliminates the cost to fabricate the design.

f) Training Data Size represents the sample size of the
training data. The training data size will impact the accuracy

TABLE I: Performance of ML-based Hardware Trojan detection
Methods Golden Design Required Training Features Training Data Size True Positive False Negative Accuracy

[25] Yes 2 Current Measurements 1k instances >97% 0-2.8% >98%
[28] Yes Architectural Events, Instruction Counts 1k samples >90% 0% >97%
[29] Yes 6 Transmission Measurements 30 0-100% 0% 0-100%
[30] Yes 5 Features of Netlist Nets of 16 design 0-100% 0-22% 0-100%
[31] Yes 11 Features of Netlist Nets of 15 design 5.3-100% 0-2.8% 5.3-100%
[13] Yes 8 Features of Runtime Traffic 716 N/A N/A 85-99%

[33] unsupervised No 8 Features of Runtime Data 216 N/A N/A 50-87%
[33] supervised Yes 8 Features of Runtime Data 216 N/A N/A 85-99%

[32] Yes 10 Features of Runtime Data 7260 N/A N/A 67-98%
[35] No 500 Current Samples 100 N/A N/A 70-98%
[37] No Controllability, Observability Metrics N/A N/A 0% N/A
[38] Yes 2 features of Netlist Nets of 8 designs 27-100% N/A >94%
[36] No 6 Side Channel Fingerprints Nets of 5 designs 100% 0-92.5% >69-100%
[12] Yes 11 features of netlist Nets of 16 designs 5.3-100% 0-2.8% >33-100%
[34] Yes 2 features of Runtime Data Nets of 17 designs N/A N/A >80.2-91.1%
[27] Yes Power Consumption 27k Gates N/A N/A N/A
[26] Yes Power Consumption N/A 100% N/A N/A
[11] Yes Side Channel Signatures, Power Variants Nets of 10 designs >97% N/A >97%

TABLE II: Data used in various detection schemes.

Model On-chip Data Design Netlist Runtime Traffic
SVM [29] [30] [13], [26], [33]
Neural Network [25] [27] [35]
KNN — — [35]
Random Forest — [12], [31] [35]
HS-Trees [28] — —
K-means Clustering — [37], [38] [36]
Logistic Regression — — [35]

of the network. Therefore, a large unbiased dataset is likely
to improve the accuracy of the ML model and vice versa.

The training data is fundamental to any ML-based approach.
The model needs to be trained on the appropriate dataset
and features to improve the prediction of the Trojan-inserted
design. Although increasing the size of dataset could reduce
the risk of over-fitting the model, different types of data will
require certain pre-processing, thereby, increasing the cost and
overhead. Post-development chip could produce very precise
training data with on-chip sensors, which could provide a very
accurate model such as [25], [28], [29]. However, it will lead
to inevitable overhead and cost in chip development. Run-
time data collection will address this challenge, but will suffer
accuracy drop as demonstrated in [13], [26], [32], [34]. The
netlist designs with very limited samples to train did not result
in a low accuracy. On the contrary, it maintains a considerably
high accuracy with enough features to balance the model
and can be further improved with additional features such
as [11], [12], [27], [30], [31], [35], [38]. Unsupervised training
such as [33] shows a low accuracy compared to supervised
training. However, this approach does not require golden chip
to provide training data. This is a significant advantage since
the availability of the golden chip is not always guaranteed,
and it also indicates a more efficient data collecting process.
[35]–[37] utilize different unsupervised ML approaches and
provide a relatively high accuracy and low false negative rate
without the golden design.

The features of the dataset demonstrate the attributes that are
weighted in the ML model. Table II shows the data feature that
prior works chose to train the detection network. The selection
of domain-specific features will make a significant impact on
the performance and accuracy of the model, as well as alleviate

the difficulties and cost overhead to collect the data samples.
[25] uses two current measurements collected from the on-chip
sensors to generate data samples, similar to [28], [29]. This is
the most effective way to create training features by dedicating
specified parameters to classify the Trojan insertion. With a
low overhead, this approach can be very effective as shown
in Table I. Runtime power traces and data traffic are used
in [13], [28], [29], [32], [33], which require no overhead to
acquire the data. However, more features are needed to ensure
correct classification. This might reduce the performance and
increase the risk of over-fitting the model, in cases where
some features are correlated to each other. Netlist features are
also utilized in [30], [31] to classify the abnormal area of the
netlist, thereby detecting the Trojan. This could help identify
the Trojan designs at the early stage of the development, but
limit the availability of dataset due to the lack of Trojan-
inserted netlist. [27], [35], [37], [38] collect simulated features
from the netlist design which further improves the size of
training data. Unsupervised ML, as shown in [35], [37] take
significantly more features to achieve similar performances as
supervised learning. [36] used the features from runtime side-
channel fingerprints to train the unsupervised model, incurring
a massive feature space identical to [35], [37]. Training an
unsupervised model is still a problem compared to supervised
ones, albeit it can work in constrained environments when
trained with appropriate features.

V. CONCLUSION AND FUTURE DIRECTION

HT is an expanding research topic that has gained con-
siderable attention over the last decade. Researchers have
made significant progress in developing efficient algorithms
for HT detection. In this article, we explored state-of-the-art
techniques that employ ML for identifying the manifestation
of Trojans in a circuit. Even though ML models furnish
promising detection accuracy, it is rarely a near perfect 100%.
This implies that some Trojans that are misclassified by the
ML framework escape detection. This can be highly detri-
mental to the system security, as attacks launched by a single
Trojan can disrupt the functionality of the circuit. Furthermore,
recently adversaries have been targeting the ML models, both

in software [39] and hardware domains [40]. Attackers can
subdue classification process by injecting adversarial sam-
ples that are intentionally classified as benign while bearing
malicious capabilities. Therefore, future research should not
only improve the performance of the ML algorithms, but also
focus on defending the models against potential adversarial
attacks. Moreover, since most of the detection techniques
encompass only Trojans inserted during design or fabrication
phase, they should be bolstered by incorporating Trojans that
can be inserted during specification design, EDA tool design,
postmanufacturing test, and packaging process. This will aid
in improving the overall reliability and security of the system.

REFERENCES

[1] S. Bhunia, M. Abramovici, D. Agrawal, P. Bradley, M. S. Hsiao,
J. Plusquellic, and M. Tehranipoor, “Protection against hardware trojan
attacks: Towards a comprehensive solution,” IEEE Design & Test,
vol. 30, no. 3, pp. 6–17, 2013.

[2] C. Rooney, A. Seeam, and X. Bellekens, “Creation and detection of hard-
ware trojans using non-invasive off-the-shelf technologies,” Electronics,
vol. 7, no. 7, p. 124, 2018.

[3] S. Adee, “The hunt for the kill switch,” iEEE SpEctrum, vol. 45, no. 5,
pp. 34–39, 2008.

[4] L. Pyrgas, F. Pirpilidis, A. Panayiotarou, and P. Kitsos, “Thermal
sensor based hardware trojan detection in fpgas,” in 2017 Euromicro
Conference on Digital System Design (DSD). IEEE, 2017, pp. 268–
273.

[5] R. Elnaggar and K. Chakrabarty, “Machine learning for hardware
security: Opportunities and risks,” Journal of Electronic Testing, vol. 34,
no. 2, pp. 183–201, 2018.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725–1732.

[8] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st inter-
national conference on computer design (ICCD). IEEE, 2013, pp.
471–474.

[9] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102,
2017.

[10] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 22, no. 1, pp. 1–23, 2016.

[11] X. Chen, L. Wang, Y. Wang, Y. Liu, and H. Yang, “A general framework
for hardware trojan detection in digital circuits by statistical learning
algorithms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 10, pp. 1633–1646, 2016.

[12] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extrac-
tion at gate-level netlists and its application to hardware-trojan detection
using random forest classifier,” in 2017 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[13] A. Kulkarni, Y. Pino, and T. Mohsenin, “Svm-based real-time hardware
trojan detection for many-core platform,” in 2016 17th International
Symposium on Quality Electronic Design (ISQED). IEEE, 2016, pp.
362–367.

[14] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Sup-
port vector machines,” IEEE Intelligent Systems and their applications,
vol. 13, no. 4, pp. 18–28, 1998.

[15] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45–66, 2004.

[16] D. R. Cox, “The regression analysis of binary sequences,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2,
pp. 215–232, 1958.

[17] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p.
1883, 2009.

[18] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the royal statistical society. series c
(applied statistics), vol. 28, no. 1, pp. 100–108, 1979.

[19] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[20] W.-Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14–
23, 2011.

[21] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[22] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international

conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

[23] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for
streaming data,” in Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[24] M. H. Hassoun et al., Fundamentals of artificial neural networks. MIT
press, 1995.

[25] Y. Jin, D. Maliuk, and Y. Makris, “Post-deployment trust evaluation
in wireless cryptographic ics,” in 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 965–970.

[26] T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, “Detection tech-
nique for hardware trojans using machine learning in frequency domain,”
in 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE).
IEEE, 2015, pp. 185–186.

[27] J. Li, L. Ni, J. Chen, and E. Zhou, “A novel hardware trojan detection
based on bp neural network,” in 2016 2nd IEEE International Con-
ference on Computer and Communications (ICCC). IEEE, 2016, pp.
2790–2794.

[28] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Run-time hardware
trojan detection using performance counters,” in 2017 IEEE Interna-
tional Test Conference (ITC). IEEE, 2017, pp. 1–10.

[29] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon demonstration
of hardware trojan design and detection in wireless cryptographic ics,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 4, pp. 1506–1519, 2016.

[30] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware
trojans classification for gate-level netlists based on machine learning,”
in 2016 IEEE 22nd International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE, 2016, pp. 203–206.

[31] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Hardware trojans
classification for gate-level netlists using multi-layer neural networks,”
in 2017 IEEE 23rd International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE, 2017, pp. 227–232.

[32] A. Kulkarni, Y. Pino, and T. Mohsenin, “Adaptive real-time trojan detec-
tion framework through machine learning,” in 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2016, pp. 120–123.

[33] A. Kulkarni, Y. Pino, M. French, and T. Mohsenin, “Real-time anomaly
detection framework for many-core router through machine-learning
techniques,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 13, no. 1, pp. 1–22, 2016.

[34] V. R. Carvalho and W. W. Cohen, “Single-pass online learning: Perfor-
mance, voting schemes and online feature selection,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2006, pp. 548–553.

[35] M. Xue, J. Wang, and A. Hu, “An enhanced classification-based golden
chips-free hardware trojan detection technique,” in 2016 IEEE Asian
Hardware-Oriented Security and Trust (AsianHOST). IEEE, 2016, pp.
1–6.

[36] Y. Liu, K. Huang, and Y. Makris, “Hardware trojan detection through
golden chip-free statistical side-channel fingerprinting,” in Proceedings
of the 51st Annual Design Automation Conference, 2014, pp. 1–6.

[37] H. Salmani, “Cotd: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 2, pp.
338–350, 2016.

[38] B. Cakır and S. Malik, “Hardware trojan detection for gate-level ics
using signal correlation based clustering,” in 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2015, pp.
471–476.

[39] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th ACM
workshop on Security and artificial intelligence, 2011, pp. 43–58.

[40] S. M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi,
A. Sasan, H. Homayoun, and S. Rafatirad, “Adversarial attack on
microarchitectural events based malware detectors,” in Proceedings of
the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

