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Abstract 
Statistical timing characterization for modeling On-Chip 

Variation (OCV) is critical in current technology nodes to 

avoid over-design and to improve design convergence and 

predictability. OCV characterization, however, is resource 

intensive as it involves running millions of Monte-Carlo spice 

simulations to cover different timing arcs for multiple cells in 

standard-cell library. We have developed a neural network 

model that fully comprehends multiple cell types to model 

cell propagation delays as well as OCV sigma at target 

process-voltage-temperature (PVT) corners with a 

significantly reduced number of simulations. The proposed 

method generates Liberty Variation Format (LVF) models 

which are the latest and most accurate representation of OCV 

margin in the industry’s standard tools and flows. 

On extensive testing with 7 million OCV delay values in 

10nm node, we attained 60% reduction in runtime while 

maintaining prediction-error less than 5% for 99.98% arcs 

which can be used for early timing integration. 

Keywords 
Library cell characterization, PVT, EDA, OCV, LVF, 

Neural Networks, Spice. 

 

1. Introduction 
As the technology node shrinks, the cell performance 

becomes very sensitive to multiple variability sources arising 

from device as well as interconnects. A margin or derating 

value is typically added to account for this variability during 

Static Timing Analysis (STA). For older technology nodes, a 

global derating value was used. This, however, resulted in 

excessive pessimism and over-design leading to severe 

performance limitations. Advanced on-chip variation 

(AOCV) was then adopted to account for cancellation of 

random variation effects with path depth and distance. This 

methodology reduced pessimism associated with the use of 

global derating value. The derating methodology was further 

enhanced to Parametric On-Chip Variation (POCV), which 

models the local variation as a function of the intrinsic cell 

delay and load parasitics. POCV can be represented with the 

liberty variation format (LVF), a widely used industry 

standard. LVF models capture delay impact of OCV at 

multiple slew and load combinations in delay tables. Each of 

these methodologies have been developed to incrementally 

decrease pessimism associated with variability modeling and 

improve accuracy of static timing analysis. But these 

accuracy improvements come at the expense of increase in 

runtime and resource usage in library characterization stage. 

A major contributor to the extensive runtime and resource 

usage mentioned is due to the fact that designs must work 

across multiple operating conditions and contexts that cover 

the entire PVT space.  

Research on the trade-off between PVT coverage and 

time-to-market has been a focus on timing analysis for a 

while. Finding the minimum set of dominant corners has 

become one of the important research topics for example in 

[2]-[4]. Reducing runtime while improving accuracy for 

timing library generation has also been a mainstream of 

modeling topics as shown in [5]-[8]. Machine learning has 

been gradually involved in EDA field given the increasing 

complexity in semiconductor design and analysis. There are 

many efforts to expand the ML solution to EDA tools and 

hardware design methodologies for example as depicted in 

[9]. Predictive algorithm, self-learning mechanism and many 

other ML concepts have already been explored in timing 

analysis. [10] proposes a corner-less static timing analysis 

approach that uses a single run of STA to cover all process 

corners with propagation of delay and slew models as linear 

functions of process parameters. As an extension of this 

approach for better accuracy, [11] proposed a prediction of 

the timing analysis at unobserved corners. It used trained 

analysis results at observed corners based on multivariate 

linear regression and predicted possible timing violations at 

unobserved corners. [12] proposed a learning-based STA 

library to predict the negative bias temperature instability 

(NBTI) induced delay degradation. It utilized smaller designs 

to learn the degradation on gates and predicted timing of gates 

in processor-sized designs. Deep Learning was employed to 

improve the computational efficiency of timing library 

characterization in [13]. This approach predicted propagation 

delays at all necessary slew and load values using delays at 

fewer set of (slew, load) points as reference. 

In this paper, we seek to resolve the trade-off between 

accuracy and characterization runtime, with the use of an 

enhanced deep neural network to accurately model the 

variation coefficients and delay values in LVF CCS format 

across all signoff PVT corners. This would help improve 

design convergence and reduce significant number of spice 

simulations during characterization, so that it is no longer 

necessary to sacrifice accuracy over runtime or vice versa. 

The remainder of this paper is organized as follows. In 

Section 2 we give the reader background on the concepts of 

variation, characterization and library development. Sections 

3 and 4 presents the proposed approach, while Sections 5 and 

6 depict the results and conclusions. 

2. Background  
The core of our work presented in this paper is on PVT 

variation; an extremely complex phenomenon as it contains 

systematic and random components. A representation of PVT 

space is provided in Figure 1. Manufactured devices can fall 

anywhere in the PVT space and still expected to be functional.  
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Figure 1: Process Complexity 

An engineering approach to address this is to break it 

down into systematic (global) and random (local) 

components and address each of them separately as illustrated 

in Figure 2. To handle global variation multiple corners, 

representing the device and interconnect at different points in 

PVT space, are defined for a project and the chip is analyzed 

and validated at all these corners. There exists a strong 

correlation between the number of corners and confidence 

with which a design can be taped-out. To support analysis at 

multiple corners and manage complexity, cell/gate behavior 

is abstracted through cell-characterization at each predefined 

global corner. Local variations are handled by adding their 

cumulative impact to delays during analysis at each global 

corner. To characterize the delay impact due to local 

variations, several Monte-Carlo simulations are run at each 

(slew, load) point for each arc/condition/cell in the library. 

The specifics on characterization methodology for local OCV 

are discussed in the next section. 

 
Figure 2: Classification of device variation into global and 

local variation. 

2.1. Characterization Process 
As described earlier, timing abstracts/models are 

generated through a process referred to as timing 

characterization. This process involves a series of spice 

analysis runs for measuring several parameters like 

propagation delay, output transition time, input capacitance, 

setup time, hold time, etc., and capturing the results in a 

lookup table format.  This measurement occurs over a range 

of input slews and output loads and at several PVT corners. 

Timing characterization for local variation captures delay 

impact due to OCV, which is later used to derate path-delays 

during STA. Local variation is captured using Monte-Carlo 

simulations which runs hundreds of spice simulations for 

variation effects at each (slew, load) characterization points 

and is represented in industry standard formats like LVF. A 

conceptual illustration of the characterization process is 

depicted in Figure 3. Spice simulations would need to be run 

at each of the multiple simulation contexts (sim context) 

which include corners, slews, loads, etc., for all the cells in 

the library. This results in an extensive number of required 

Monte-Carlo simulations that need to be completed. 

 
Figure 3: Library Characterization Flow 

2.2. Library Development Challenges 
Recent EDA characterization tools offer required 

automation to run spice simulations at all the specified 

simulation contexts and generate libraries with OCV data. 

However, their compute resource requirement is very high, 

due to the reasons stated earlier and the flow cycle can take 

several months even on reasonably sized compute farms. For 

observed timing library generation, statistical OCV 

characterization has been shown to occupy as much as 80% 

to 90% of the total characterization effort depending on the 

cell complexity and spice optimization settings [1]. Due to 

this bottleneck, library characterization and library 

releases/deliverables typically happens in phases spanning 

several months. Early availability of complete PVT libraries 

would benefit all the downstream tools and help design 

closure with improved predictability. This work aims to 

bridge the gap in the current library generation and release 

process by supplementing predicted ocv delays for early 

integration cycles and switch to simulation-based delays 

closer to tapeout. 

3. Methodology and Models 
As introduced in the previous sections, statistical 

variability in electrical behavior of a gate is a complex 

phenomenon and variability characterization is an extremely 

time-consuming process.  A model-based estimation can offer 

significant Time-To-Market benefits compared to brute-force 

characterization of entire library. Current methodologies for 

modeling variation effects result in either a) Increase in 

number of simulations, if full blown Monte-Carlo simulations 

are performed at all necessary (slew, load) points for all 

arcs/cells in a library or b) Increase  in number of models 

needed to generate LVF tables, if multiple models are created 

to model different arcs, functionality, cell-types and Vth types. 

Modelling methodologies that are arc/gate specific, cannot 

scale to new cells or corners. This work eliminates the need 

for multiple cell-specific models by using arc/gate specific 

attributes for an arc as the ‘Gate-Reference’, when 

performing delay prediction for any (slew, load) index 



 

 

corresponding to the arc. So, the global model essentially uses 

the information in the gate-reference to make a prediction for 

the specific arc while learning OCV scaling behavior from a 

variety of arcs and cells. Use of a gate-reference, allows us to 

characterize and feed a sparse OCV delay table to a trained 

model and generate a dense OCV delay table as shown in 

Figure 4. The methodology for creating the gate-reference is 

outlined in the following section. 

 
Figure 4: High level representation of modeling 

methodology: Dense OCV table is generated from a Sparse 

OCV table using a global neural network model for all cells 

in library at a target PVT corner.  

Gate-Reference: We choose OCV delays at selected 

(slew, load) indices, along with their corresponding slew and 

load values as illustrated in Figure 4 and use it as the gate-

reference. Delays from same indices are picked for all 

arcs/cells in the library. The points are strategically 

handcrafted across the boundary and diagonal (slew, load) 

indices with the intent to keep the total number of gate-

reference points to a minimum. During our trials as shown in 

Table 1, we found the model to offer similar performance 

even when indices were slightly varied. If a higher error is 

slightly tolerable as it would yield further savings, a lower 

gate reference i.e. 5points could be utilized. For this work, 10 

points for the Gate-Reference that corresponds to ~16% of 

total points for an 8x8 (slew, load) table gave a good trade-

off between accuracy and runtime. 

Table 1: Trial runs for selecting optimal neural network 

parameters.  

Neural network modeling has two major phases: Training 

and Inference. The Training phase is used to build a model 

using data for which output values are known. Neural 

network training requires large volumes of data and our 

methodology to supply attributes of arc as gate-reference 

allows us to merge data from different arcs/cells in a library 

to create this training data. When a model is trained, it can be 

used to predict unknown delays in Inference phase. 

The proposed methodology for reduction in statistical 

local variability characterization is summarized below; 

a) For 30% of the library cells, full blown Monte-Carlo 

simulation is performed at all (slew, load) points and 

the data is used for training. Cells are chosen using a 

random selection to allow model to learn OCV 

behavior across different arcs and cell-types. 

b) Sparse characterization is performed for remaining 

70% cells in the library. This sparse library (16% of 

8x8 table) is used as gate-reference during inference 

to supply arc/cell specific attributes to the global 

model. 

c) Use the model from step (a) to predict OCV delays 

for non-characterized 84% of the (slew, load) points 

for 70% of the cells from step (b). 

d) This translates requirement to characterize only 

~40% of total points (Training: 30% + Gate-

Reference for Inference: 16% of 70% = 11.2%), 

resulting in 60% reduction in runtime including 

characterization effort needed for training. 

High level representation of the modelling methodology 

is presented in Figures 4 and 5 where ���_����  for an arc is 

modelled using gate-reference vector 
� and input vector 
�. 

� matrix is comprised of ���_��� for 10 (slew, load) 

reference points along with other cell attributes; threshold 

voltage Vth type, rise/fall and early/late sigma indicators. � 

matrix is comprised of random selection of ���_��� from all 

64 (slew, load) points. 

 
Figure 5: Representation of Modeling Methodology: 

Gate-Reference � from sparse characterization is fed to 

model along with input �   for the target arc to predict output 

Y ���, ��. � � ����,���,���_�����,, ��� , �������, �����     
where   �! ∈ �00,40,70,33,73,04,55,07,47,77� and ��� ∈
�ℎ��ℎ, ��), *�+�.  � � ����,���,���_���  where �! ∈ �8
8�. 

Figure 6 shows the neural network architecture 

implemented. The network consists of combination of Fully 

Connected layers and ReLu activation functions similar to the 

architecture in [12]. Optimization process for neural network 

training is discussed in section 4. 

We have tested our methodology for OCV sigma 

estimation at three major front-end categories of corners 

(slow, typical and fast) with consistent results which suggests 

that it is easy to expand this methodology to model entire set 

Training Gate Topology Arcs 

with 

Error > 

5% 
Data Reference Blocks Layers 

10% 10 4 40 0.16 

20% 10 4 40 0.06 

30% 10 4 40 0.024 

 

30% 5 4 40 0.06 

30% 7 4 40 0.047 

30% 10 4 40 0.024 

30% 18 4 40 0.017 



 

 

of library corners. Our methodology combines characterized 

data with model-based estimates to achieve 60% reduction in 

characterization effort, which, in turn, enables variation 

aware timing analysis to be performed much earlier in the 

design cycle. Our model-based libraries can be swapped with 

characterization-based libraries at any stage in design cycle in 

a seamless fashion. The proposed solution can further be 

extended to other various characterization areas such as 

dynamic power, leakage power, noise, and other sensitive 

variability sources by simply updating the library parser to 

work with each objective function. 

 
Figure 6: DNN library generator model architecture using 

deep neural networks with residual connections for accurate 

delay modeling. 

4. Training and Model Optimization 
This section focuses on steps followed to build the neural 

network model in this paper. Neural networks have shown 

promise in several industry domains and have been an area of 

thrust for research and development for modeling. There are 

several open-source frameworks available to build neural 

network models and most frameworks would support our 

architecture. A large training dataset is required to achieve 

high accuracy with neural networks and neural network 

training is also impacted by choice of hyper-parameters used 

for training.  

Neural network architecture was optimized over several 

trials using training vs test-loss. Training-loss is the 

prediction error seen for the same dataset that used for 

training and test-loss is prediction error seen in case of new 

data that was not used for training. A good model is expected 

to have test-loss comparable to training-loss. Also, a model 

with lower values for these metrics is desirable compared to 

one with higher values. Explorations using residual 

connections [14] resulted in reduction in loss and was adopted 

for our final architecture presented in Table 2. The number of 

layers and blocks was determined based on experiments 

carried out on authors’ previous related work [13] that 

showed fewer layers resulted in larger rms loss and less train-

vs-validation accuracy. The optimal numbers picked gave a 

small deviation between train and validation rms loss as well 

as an acceptable accuracy. 

We used 30% of standard cells for training in our current 

implementation which lead to 2.2million records covering 

multiple timing arcs across cell-types, Vth types, rise/fall 

conditions and different sensitizations. As mentioned earlier, 

these cells were selected based on random selection. 

Establishing the lower-bound for characterization simulations 

required, will be explored in future. 

Table 2: Neural Network Architecture. Set of Fully 

Connected Layers (FC) along with a residual connection is 

referred to as a block. 
 Type Layers Hidden 

Units 

Block1 FC+ 

ReLu 

14 300 

Block2 FC+ 

ReLu 

12 200 

Block3 FC+ 

ReLu 

10 100 

Block4 FC+ 

ReLu 

4 50 

Neural network training typically also involves several 

hyper-parameters like batch-size, number of epochs for 

training, learning-rate, etc., which were refined based on 

several experimental trials. A snapshot of critical parameters 

of our training setup is presented in Table 3. We trained 

neural network models on representative libraries from slow, 

fast and typical regions of PVT spectrum covering four 

representative Vth-types from High Vth to Ultra-low Vth. 

The results from our explorations are presented in the next 

section. 

Table 3: Neural Network Training for single corner and 

single Vth. 

Item Detail 

Training Set 2.2 million 

Test Set 7.4 million 

Unique Cells 260 

Batch Size 16 

Epochs 100 

Learning Rate 0.001 

Optimizer Adam 

5. Results 
 We analyze the modeling error associated with OCV 

delays in this section. The difference between measurements 

from actual characterization and model-based estimates is 

used to quantify the Prediction Error. Prediction Error as a 

function of actual delay is plotted in Figure 7, for a few 

representative corners. For our evaluation, we target 

prediction error within 5% which is the most common 

targeted accuracy in spice simulation results for timing 

analysis purposes. A reference error line is drawn in green in 

Figure 7 to represent our error target. The corner names and 

Vth types have been anonymized for presentation and 

publication purposes. 

We present results from two different models at a target 

corner.  

a) Single Vth Model: Model built using data from cells 

corresponding to one Vth at a time [Figure 7].  

b) Multi Vth Model: Model built by combining data for 

all Vth together [Figure 8]. 

From the error distribution plots in Figure 7, we find that, 

for the single Vth model (Ex: Vth1-Corner1), out of 7.4 

million (slew, load) points tested, less than 1000 points have 

predicted error greater than 5% which is an accuracy 

percentage acceptable for spice simulations. This suggests 

that the model-based prediction is within an acceptable 



 

 

accuracy for 99.988% of the cells/arcs. A similar trend is 

observed with multi Vth model, as shown in Figure 8. These 

results offer credence to our belief that the proposed 

methodology and architecture can scale well under multiple 

contexts and corners. 

 
Figure 7: Distribution of Prediction Error for a Vth type at 

different corners picked by fast, slow and typical regions in 

PVT space. Observed error is within 5% for 99.988% of the 

cases. 

 
Figure 8: Distribution of Prediction Error for all Vth-Types 

at single PVT corner. Observed error is within 5% for 

majority of the cases. 

The distribution of cases with 'Prediction Error' greater 

than 0.012% for Vth1-Corner1 is presented in Table 4. Each 

cell in the table holds the percentage of arcs that lie outside 

error tolerance, at the indicated (slew, load) index. By 

indexing the table by slew, load indices we obtain a good 

view of regions of error concentration. From the table, it can 

be observed that majority of the error cases are concentrated 

at the boundary (slew, load) points. For instance, 80% of 

points with an error greater than acceptable tolerance 

corresponds to a slew index '0' or a load index '0', which is the 

smallest slew/load used for characterizing those cells. 

Table 4: Distribution of Error Across Slew and Load Index 

for the 0.012% of total data points with error greater than 5%. 

Each cell displays the percentage of arcs with errors at 

specified (slew, load) point. Majority of cases are limited to 

the smallest load or sharpest slew. 

slew/ 

load 

0 1 2 3 4 5 6 7 

0 35% 19% 7% 4% 1% 0% 0% 0% 

1 9% 3% 1% 1% 0% 0% 0% 0% 

2 2% 1% 0% 0% 0% 0% 0% 0% 

3 2% 1% 0% 0% 0% 0% 0% 0% 

4 2% 0% 0% 0% 0% 0% 0% 0% 

5 2% 0% 0% 0% 0% 0% 0% 0% 

6 1% 0% 0% 0% 0% 0% 0% 0% 

7 4% 1% 1% 0% 0% 0% 0% 0% 

For max-timing, boundary slew and load points in this 

region are mostly characterized to enable interpolation and 

gates in an optimized design and the design is not expected to 

operate here. Moreover, large percentage error in this region 

would still translate to a small absolute error. For these 

reasons, we argue that some error in this region is tolerable 

for early timing analysis for max-timing. For min-timing 

however, this region is critical and future work to minimize 

this error can be explored through use of different indices for 

gate-reference as shown in Figure 9. Alternatively, error can 

also be minimized by using smaller-than-expected slew, load 

values for index (0, 0), so that this boundary is far from actual 

operating region. 

 
Figure 9: Gate-Reference (slew, load) indices for max and 

min libraries are chosen strategically to achieve better 

accuracy. 

The results presented validate our claim that our 

methodology and framework have a good comprehension of 

local variation and can offer high quality estimates for OCV 

sigma while significantly reducing the characterization 

requirements. 

6. Conclusion 
With increase in significance of on-chip variation effects 

and an explosion in the number of analysis corners, library 

characterization for variability has become exceedingly 

expensive and time consuming. This demands innovations 

outside of typical EDA tool enhancements to allow faster time 

to market with high accuracy and predictability. We have 

presented a deep learning-based modeling framework to 

comprehend variation effects on timing that can easily scale 

well for different library characterization tasks. We have also 

demonstrated that our proposed approach achieves high 

accuracy (>95% given that 5% which is the most common 

targeted accuracy in spice results for timing analysis 



 

 

purposes.) for 99.988% of data points, out of 7 million data 

points tested. Early availability of the full set (i.e. all corners) 

of libraries achievable with our model helps identify and 

address issues early in design cycle and that goes a long way 

in improving designer productivity by minimizing rework. 

Data from proposed model can then be replaced with actual 

characterization data, once it is available, thereby removing 

library-characterization from the critical path in design 

integrations, without compromising accuracy. By combining 

deep learning techniques with data from EDA tools, we are 

able to significantly reduce time-to-market for hardware 

products and foster competitive advantage. 
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