
Secure High-Level Synthesis: Challenges and
Solutions

Nitin Pundir, Farimah Farahmandi, and Mark Tehranipoor
University of Florida

{nitin.pundir, ffarahmandi, tehranipoor}@ufl.edu

Abstract—High-level synthesis (HLS) has significantly reduced
time and complexity of the hardware design by raising the
abstraction to high-level languages (HLL) like C/C++. HLS
has allowed non-hardware engineers to quickly prototype and
test their algorithmic flow, and enabled hardware developers to
build hardware quicker for emerging algorithmic designs such as
machine learning (ML) and artificial intelligence (AI) networks.
However, current HLS tools were not designed with security in
mind as they only optimize the design for area, power, time,
and throughput. As a result, security vulnerabilities may be
introduced in the HLS-generated RTLs unintentionally. In this
paper, we discuss some of the optimizations performed by HLS
and present bad design coding practices in HLL that could lead
to security vulnerabilities in the RTL. We also explore potential
solutions, their limitations, and challenges moving forward to
bring attention towards development of automated verification
tools and guidelines to ensure secure HLS translation.

Index Terms—high-level synthesis, hardware security, verifica-
tion

I. INTRODUCTION

High-level synthesis (HLS) takes as input the hardware
definition of a design in a high-level language (HLL), i.e.,
C/C++, and translates it into the hardware description language
(HDL), i.e., VHDL/Verilog modules [6]. HLS has signifi-
cantly reduced the time and complexity involved with the
logic design process using HDLs by raising the abstraction
to widely adopted and easy to describe HLLs. Deploying
HLS has helped entities with small design teams or from
software background to compete with diminishing time-to-
market (TTM) constraints and to rapidly develop complex
hardware components. It has also helped with rapidly evolving
designs like machine learning (ML) and artificial intelligence
(AI), which lack legacy intellectual properties (IPs) while their
algorithmic architecture evolves fast [19].

At inception, HLS was an easy way to test the perfor-
mance of the algorithmic flow by promptly prototyping the
hardware design and testing it on FPGAs. However, due
to recent improvements in HLS compilers and competitive
TTM constraints, HLS has found its way into IP and system-
on-chip (SoC) development either deployed on FPGA-as-a-
Service platforms [27] or used as third-party IPs during RTL
integration. This wide adoption has raised concerns about the
use of HLS compilers for security-critical applications because
HLS compilers were not developed with security in mind and
have only been optimized for performance constraints such as
latency, throughput, area, and power.

There are critical aspects that need to be addressed when
transitioning from C/C++ to RTL. For example, clock circuitry,
reset circuitry, variables data width, variables sign (signed/un-
signed), handling of data representation (fixed/floating point),
memory location (register, ROM, RAMs, etc.), type of data
paths (pipelined, sequential, parallel), etc. Some constraints
are handled automatically by the matured HLS process, but
others rely on the user’s input. In addition, third-party HLS
compilers have their own set of libraries and specifications
to generate optimized hardware. Therefore, the user may be
unaware of handling the critical aspects of the RTL when
coding in C/C++. It could result in either functionally incorrect
hardware or functionally correct but insecure hardware with an
unintended threat surface. The former is easier to detect and
fix by using various functional equivalency tools between HLL
and HDL [15], [17]. However, the latter is more challenging
to detect because HLS-generated RTLs are more complex to
read and understand than a human-written RTL. Moreover,
users may be unaware of the translation effect on the design’s
security, and it is challenging to detect them due to a wide
variety of threat models.

Similarly, the skill and background limitations associated
with hardware and software coding practices for experts from
different domains can result in vulnerable HLS-generated RTL
[16]. For example, an expert from the software domain may
lack hardware design knowledge, HLS may be black-box to
him/her, and may not completely comprehend the RTL design
files. Similarly, the lack of software domain coding expertise
and increased design complexity for hardware could result
in insecure C/C++ coding practices and incomplete security
verification efforts to verify the generated-RTL. Fig. 1 illus-
trates various causes associated with the different domain of
expertise that could lead to vulnerable RTL design generation.

HLS has gained prominence in modern SoC design develop-
ment due to its recent improvements and the ability to generate
optimized HDL [14], [23], [31]. It has been actively used to
generate RTL designs for security-critical applications such as
cryptography, ML/AI networks, hashing algorithms, etc., [3].
The expectation is that such designs must be secure and free
from security vulnerabilities. Therefore, it necessitates HLS
to be aware of security-critical assets in the design during
translation. Such security-critical assets could include encryp-
tion/decryption keys, hashing keys, weights and biases of
ML/AI networks, etc. Failure to acknowledge these security-
critical assets by HLS during optimization and translation

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 164 22nd Int'l Symposium on Quality Electronic Design

Fig. 1. Different sources, people, and causes leading to generation of vulnerable design using HLS.

could generate vulnerable RTLs [25]. The security implica-
tions of using such RTLs can include information leakage,
susceptibility to fault injection, access control violations, or
side-channel leakage. Therefore, there is a need to verify and
ensure HLS translation is secure and the generated RTLs are
free from security vulnerabilities. However, such verification
methods should be universal and scalable to different design
types. Therefore, automated security verification tools are
required to verify the complex machine-generated RTL codes
and ensure secure translation.

In this paper, we review different HLS optimization steps
and design coding practices in HLL. We highlight their effect
on design security and discuss how, if ignored, certain step-
s/practices could result in security vulnerabilities in critical
applications. We address the limitations of each solution to
illustrate the insufficiency of any single method to provide full
security coverage during HLS translation. We present the need
for security-aware optimization steps and algorithms in HLS.
Finally, we outline the challenges present moving forward for
implementing verification solutions.

The rest of the paper is organized as follows. Section
II discusses the motivation behind making HLS translation
secure. Sections III and IV briefly describe the steps involved
during HLS translation and discuss different optimizations
HLS adopts during translation, respectively. Section V high-
lights several security concerns in the generated-RTL design
due to optimization strategies used by HLS and bad coding
practices adopted by the user. Section VI discusses the existing
and potential solutions and their respective challenges. Finally,
Section VIII concludes the paper.

II. MOTIVATION

Various entities are inclined towards the use of HLS because
of the cost/TTM benefits it provides. However, vulnerable
generated RTL could introduce severe consequences on the
confidentiality, integrity, and availability of the design. Here,
we broadly classified all entities into three groups: govern-
ment, industry, and individuals/researchers. For these entities,
there are expected benefits of using HLS, i.e., reduce TTM,

Fig. 2. Classification of different entities’ benefits from using HLS and
consequences for each for using vulnerable HLS-generated RTL.

design complexity, and algorithm verification complexity.
Government and defense entities usually have smaller design
teams and rely on third-party IPs, introducing trust issues in
their supply chain [30], [32]. Therefore, the use of HLS for
them obviates the need to rely on third-party IP providers.
However, the security vulnerabilities introduced during the
HLS process can pose a major threat to government agencies
depending on the systems in which such HLS-generated IPs
are used. For industrial entities, HLS gives them the advantage
of simpler design descriptions that allows for more coverage in
terms of verification in less time. However, HLS vulnerabilities
can potentially compromise all software-hardware products
and threaten its user’s security and privacy. It also can harm
the company’s reputation. Similarly, for individuals and re-
searchers, HLS is an effective way to test their algorithms
by fast prototyping them into hardware (e.g., an FPGA) as
many may be unfamiliar with RTL coding. However, they
could avail their IPs as open-source or on the marketplace
while these IPs may contain security vulnerabilities. Fig.
2 highlights the benefits of using HLS for all entities and

the associated consequences if the generated-RTL module is
vulnerable. Therefore, it is imperative that we identify these
potential vulnerabilities and automatically detect them in the
generated RTL.

III. HIGH-LEVEL SYNTHESIS: A BRIEF OVERVIEW

HLS has been proven to rapidly generate RTLs from the
C/C++ description optimized for area, latency, throughput, and
power. Fig. 3 shows the overall flow of the RTL generation
using HLS. The flow typically includes the C/C++ design and
the testbench to ensure that the design’s functionality is correct
per the user’s requirement. HLS then takes HLL design and
generates functionally equivalent HDL. HLS is a complex
task consisting of a series of individual steps: compilation,
allocation, scheduling, binding, and FSM extraction [5], [8],
[18]. Each of these steps is briefly discussed below.

• Compilation: The first step in the HLS translation is the
compilation. HLS in the backend uses C/C++ compilers
to compile the code. It helps to ensure the code is
statically correct, and then software-level optimizations
are applied. The code is then transformed into a formal
representation of the control data flow graph (CDFG)
to help identify the data dependencies between different
operations. The CDFG is used to identify possible op-
erations that could be scheduled in parallel. Depending
on user constraints, HLS can additionally apply other
optimization techniques such as loop unrolling, loop
pipelining, etc., [4].

• Allocation: HLS identifies different hardware resources
(e.g., adders, multipliers, memory elements, buses, etc.)
needed for different operations. The HLS performs this
within the technology library’s constraints or the resource
pool provided by the user.

• Scheduling: HLS schedules different operations of the
design to different clock cycles while satisfying the data
dependencies for operations. HLS performs scheduling to
obtain the least design latency possible.

• Binding: Prior to this step, each design’s operation is
mapped to a functional unit or hardware resource. Bind-
ing aims at optimizing the total number of such functional
units or hardware resources required to implement the
design. The binding could be categorized into module
binding, register binding, and interconnection binding
depending on the optimized resources. Module binding
enables operations scheduled at different clock cycles to
reuse the same resources. Register binding maps the tem-
porary values crossing the clock boundaries to different
registers [29]. Finally, at the interconnection binding, the
connections between different resources are optimized.

• Control Logic Extraction: In the final step, the con-
trol signals are identified, and the finite state machines
(FSMs) of the design are extracted. It results in the au-
tomatic generation of the FSM that controls the design’s
overall flow, and glues the final RTL blocks together.

Fig. 3. Overview of HLS translation.

IV. HLS OPTIMIZATION STRATEGIES

HLS users expect to obtain highly-optimized RTL designs
with the least area, timing, and power overhead. Hence,
HLS performs various steps to generate the optimized RTLs.
Understanding these optimization strategies adopted by HLS
is critical for identifying potential security problems in the
generated-RTL. In this section, we briefly discuss these op-
timization strategies and the underlying steps within each
strategy.

A. Throughput Optimization

HLS attempts to improve the throughput of the RTL design.
To achieve this, HLS inserts registers between operations of
the functions and loops to create pipelines. HLS further tries
to optimize when new data could be fed into the pipelines,
also called the initiation interval. By default, HLS compilers
target to achieve an initiation interval of one so that pipeline
could start processing new data every clock cycle.

B. Latency Optimization

By default, the main goal of HLS compilers is to reduce
the total execution clock cycles of the design and could resort
to several techniques to achieve it. Some of these techniques
are briefly described below.

• Parallel Scheduling: Identifies independent operations
and loops that have no data dependency and schedule
them in parallel to each other.

• Partial/Full Loop Unrolling: Partially or fully unrolls the
loop to execute loop iterations in parallel.

• Optimize Algorithmic Trees: Identify multi-cycle algorith-
mic trees such as adder trees and optimize them into a
single cycle.

• Generate Combinational Circuitry: Whenever possible,
HLS generates combinational circuity of the design/op-
erations.

C. Area Optimization

The area is one of the key features which HLS could try to
optimize during translation. Some of the key steps include:

Fig. 4. HLS optimization strategies, potential security vulnerability database, and associated effort level to apply the potential fix.

TABLE I
AREA COMPARISON OF DIFFERENT TYPES OF FLIP-FLOP STANDARD CELLS

OF SYNOPSYS 32NM LIBRARY.

TYPE Standard cell AREA µm2

DFF DFFX1 6.60774
DFFX2 7.62432

DFF with reset DFFARX1 7.116032
DFFARX2 7.878464

DFF with preset DFFASX1 7.116032
DFFASX2 8.132608

DFF with reset
and preset

DFFASRX1 7.62432
DFFASRX1 8.132608

• Registers with low area overhead: HLS can opt for
registers with a low area overhead. Table I shows area
for different types of D flip-flops for 32nm library.

• Resource sharing: HLS can identify operations scheduled
in different clock cycles and share hardware resources
between them.

• Relying on external memory: Instead of using on-chip
memory or generating ROMs for arrays, HLS could rely
on external memory to fetch data and reduce the size of
the generated RTL.

D. Power Optimization

Power is a critical component for modern SoC designs for
which HLS could try to optimize the designs. HLS could
spread out the high switching activity operations to reduce the
dynamic power consumption of a design. HLS can also store
data on-chip instead of fetching from external DRAM, which
is at least 30x less power costly [12]. Similarly, HLS can also
convert the floating-point representations to fixed-point/integer
representations to conserve power in the generated RTL.

V. SECURITY VIOLATIONS

Earlier, we discussed a series of optimizations undertaken
by the HLS compiler to effectively translate the HLL design
specifications into a functionally-equivalent RTL design. These

optimizations do not consider security when optimizing the
design for throughput, latency, area, or power. Unfortunately,
these optimizations could result in a violation of security
requirements. In this section, we show cases of such security
vulnerabilities in the generated-RTL. We classify these poten-
tial security vulnerabilities based on the effort-level required
to mitigate them, as summarized in Fig. 4.

A. Vulnerable Scheduling

HLS attempts to reduce the overall latency of the design by
scheduling multiple operations in parallel. HLS could identify
operations executed in later stages of the design but have no
data dependency from any prior operation. It could schedule
such operations at the very beginning of the execution and
store their results in internal registers, which are used in later
stages of the design execution. Such scheduling sometimes
could violate the security policy of “If A succeeds, then
only B”. For example, in security protocol “HMAC then
decrypt” [10], decryption should only occur after the ciphertext
has been authenticated. Though the decryption occurs after
HMAC validation due to conditional statements in the C/C++
code, however, HLS could schedule certain operations of the
decryption function in advance due to no data dependency.
Possible Solution: The user should identify security-critical
operations in the C/C++ and establish data dependency to
ensure they could only be scheduled one after the other.
Moreover, the HLS scheduling algorithm could be updated
appropriately to take tags from the C/C++ level to ensure
certain operations could only be scheduled in the expected
order. For example, in the case of “HMAC then decrypt”,
all operations related to the decryption function (at TAG 2)
could only be scheduled after the completion of all HMAC
operations (TAG 1).

B. Vulnerable Resource Sharing

During optimization, HLS may be asked to minimize the
overall area of the design. To achieve this, it tries to share

registers and other hardware resources between operations.
Since HLS have no idea of secure and non-secure operations in
the design, resource sharing could lead to new attack surfaces.
For example, suppose an attacker can control a non-secure
operation that uses the same hardware resources used by
secure operation in earlier cycles. In that case, there is a
possibility of residual leakage from the hardware resources.
Possible Solution: HLS binding and resource sharing al-
gorithms should be appropriately updated to identify and
segregate the secure and non-secure operations and assets of
the design to perform resource sharing securely.

C. Flattening Security Critical Functions

HLS could perform the inlining of functions during function
calls to improve latency and avoid cycle overhead on function
calls. If a function is security-critical, all the registers asso-
ciated with that function should be verified for information
leakage. However, if HLS flattens the function each time
it is called in the main module, it significantly increases
the design’s security-critical registers. It could increase the
verification efforts of ensuring none of these registers result
in information leakage.
Possible Solution: The user can address this issue by iden-
tifying critical function calls in the design and ensuring HLS
generates separate IP for such functions. It will help in
consolidating verification efforts.

D. Non-secure FSM

HLS automatically extracts the FSM to control the datapath.
Such FSMs are optimized to exploit parallelism, reduce area,
or the number of states needed in a design. For example, HLS
could implement binary or grey code encoded FSM instead of
one-hot encoding or introduce additional don’t care states. This
could be done to reduce the state register size or synchronize
data paths. However, these optimizations could make the FSM
vulnerable to single event upsets and fault injection attacks
[22].
Possible Solution: The FSM extraction should be performed
by HLS more securely, and if possible, the user should
be given a choice of FSM encoding styles. Nahiyan et. al
proposed using ”Finite-state FFs circuit” to implement secure
FSMs resilient towards fault injection attacks [22].

E. Presence of Redundant Logic

Most HLS compilers follow a template-based translation,
where multiple templates could be glued together, based on
HLL code, to generate the final RTL. In many cases, these
templates could result in redundant logic/variables and hanging
nets in the design. If these hanging nets are exposed at the top-
level, false load and drivers could be attached to them during
RTL integration. As a result, they may get passed down the
design cycle and may have an unexpected security impact on
the design. For example, the redundant logic may lead to a
slight imbalance in power consumption, causing power balanc-
ing based power side-channel resistant implementations like
wave dynamic differential logics (WDDL) [13] vulnerable.

Possible Solution: The HLS compiler could perform a two-
stage synthesis, while the latter stage focuses on cleaning up
the redundant logic that may cause security violations in the
generated RTL. The user can synthesize the individual IP to
identify the hanging logic and nets in the design and remove
them.

F. Registers with No Reset/Preset

HLS optimizes the design’s area and may sometimes use
hardware resources that have a smaller area than other variants.
One such example is the use of registers with no reset, and this
could present security challenges. For example, the registers
could still hold secret information (encryption, decryption
keys, etc.) even after applying the reset, making information
susceptible to leakage.
Possible Solution: Most HLS compilers present their users
with configuration options to choose which type of registers to
use in the design. Users should identify and decide if registers
values should be cleared after applying reset to prevent leakage
but suffer area overhead penalty. Moreover, underlying HLS
algorithms could be updated to choose the resource type if
the particular resource will be handling the security asset.
For example, suppose the security assets could propagate
to specific registers. In that case, those registers should be
deemed critical and should clear values at reset, and all other
non-critical registers could retain values at reset.

G. Unbalanced Pipelines

To optimize dataflow and throughput, HLS inserts registers
between operations and tries to create efficient pipelines. How-
ever, the pipelines between secure and non-secure variables
could be unbalanced, resulting in the secret variable reaching
a hardware resource early while the non-secret asset is still in
the pipeline. For example, in AES, the round key reaching the
XOR early while plaintext is still in the pipeline going through
substitution, shiftrows, and mixcolumns. It could result in
leakage of the secret if an attacker can manage to flush the
pipeline.
Possible Solution: The HLS should be updated to allow
tagging of the secure and non-secure variable so that the
scheduling algorithm could ensure pipeline depths between se-
cure and non-secure variables is matched. Automatic security
verification approaches (such as information leakage analysis)
should be developed/used to identify such violations.

H. Passthrough Primary Outputs

To optimize the latency and reduce area, HLS directly
latches the intermediate register values to the primary outputs.
It saves the additional FSM required to control when the output
should be latched and cycle overhead.

For example, Listing 1 shows a simple HLL code, where
the “foo” function returns the final computed sum at the end
of the function execution. If the function “foo” is passed to the
HLS as the top-level module, the variables “a” and “sum” will
result in the input and output ports. As “sum” is changed for
each iteration, this may result in the intermediate value of the

sum being mirrored at the output port due to a lack of safe data
flow control. Such behavior is unsafe for sensitive applications,
such as AES, where the state (ciphertext) registers should only
be latched to the output port at the end of the final round.
Otherwise, the encryption key or some part of it may be
leaked.

Listing 1. Example C code.
1 int foo(int *a){
2 int sum = 0;
3 for(int i=0; i<len; i++){
4 sum = sum + a[i];
5 }
6 return sum;
7 }

Possible Solution: HLS compiler needs to be updated to
generate more secure FSMs that prevents intermediate latching
of data to output ports. As another solution, the user can
identify such blocks and enable pipelining.

VI. A BRIEF SUMMARY OF SOLUTIONS AND
LIMITATIONS

As discussed previously, some vulnerabilities in the HLS-
generated design could arise due to the user’s negligence
during coding the design in C/C++. It could be due to the
user’s lack of security expertise, increased design complexity,
the difficulty of analyzing the complex machine-generated
code, etc. However, some other vulnerabilities could be due
to HLS itself as it is not designed with security in mind and
its unawareness of security assets in the design. Solutions to
the former may be easy to develop and implement compared
to the latter case, which may require a complete overhaul of
the HLS compiler.

In this section, we discuss some of the potential solutions
(existing and future) that could be implemented to prevent the
vulnerabilities in HLS-generated RTL designs. We also discuss
the challenges and limitations associated with each solution.

Solution #1: HLS Security Vulnerability Database: A
comprehensive database for HLS security vulnerabilities needs
to be developed. Security vulnerabilities can be mapped to
different HLS optimization strategies (throughput, area, time,
and power), different strategy steps, and various C/C++ coding
practices. The development of such a database is crucial
for understanding various threat surfaces, developing security
properties, and generating rules for C/C++ developers. These
properties and rules could become part of automated verifica-
tion tools.
Limitations: Developing such a database is a time-consuming
and continuous process where new vulnerabilities could arise
due to updates to the HLS tool or the adoption of HLS in
the newer fields. During the development phase, the engineer
could spend huge time identifying vulnerabilities and gener-
ating an exploitable test case.
Solution #2: Secure HLS Guidelines: Secure coding and
constraint guidelines could be developed for HLS users as a
series of do’s and don’ts. These guidelines could be similar to

CERT-C [26] but focused on securely coding a parallel hard-
ware design in sequential C/C++ language. Some examples
include:

• Security-critical functions should not be flattened.
• Security-critical arrays should be local to the design

instead of fetching/storing from/to external memory.
• All registers on the sequential path of security assets

should have global reset.
Limitations: Such guidelines can only be developed for stan-
dard practices and do not account for vulnerabilities that could
be introduced due to HLS optimizations. The user constraints
(pragmas, directives, libraries) and coding styles vary with
the HLS compiler, posing challenges to accommodate such
variations.

Solution #3: Formal Verification: Formal verification at RTL
can ensure that design is secure and satisfies the security
properties even after serial-to-parallel translation, FSM in-
sertion, and hardware optimizations. Unlike simulation-based
verification, formal verification is output-driven and complete
in nature, making it ideal for security verification. Whenever
evidence of security vulnerabilities are found, a set of security
properties need to be generated. It ensures that future designs
of C/C++ or RTL can be formally verified against these
properties to ensure that the particular vulnerability is not
present.
Limitations: Generation of such properties can take time, be
done for each design individually, and may not be exhaustive
to provide complete coverage. Moreover, not all security
vulnerabilities could be expressed using formal properties, thus
requiring the need for other verification methods.

Solution #4: Assertion-Based Verification: Security asser-
tions and properties could be made part of the C/C++ design
specification. For example, in C/C++ of AES design user
can include assertion to ensure output port (ciphertext) has
data only after the final round. The assertions get translated
with the design and accommodate for any change in variable
names. The HLS compiler ensures that the generated RTL
also satisfies the assertions. An example of an industry-grade
HLS compiler that supports such verification methodology is
Catapult [9].
Limitations: The security assertions at the C/C++ level can
only include variables available in C/C++. Assertions related
to HLS inserted variables and FSMs cannot be included in the
design. It could allow vulnerabilities introduced by insecure
HLS translation to be overlooked during verification. This
methodology also requires the generation of input test vectors
to satisfy the design’s response against security assertion-
s/properties. Designs with large input vector widths can pose
timing limitations against exhaustive testing.
Solution #5: Secure Optimization Algorithms: HLS algo-
rithms responsible for scheduling, resource allocation, binding,
loop optimization, etc., could be updated to incorporate secu-
rity assets in the design. For example, resource allocation and
register binding algorithms can ensure that the same resources

or registers are not shared between secure and non-secure op-
erations. Similarly, the scheduling algorithm could be updated
to ensure certain security-critical operations are scheduled in a
specific order. The algorithms should be modified to take some
user input about security assets in the design and consider them
during translation.
Limitations: The HLS algorithms are optimized to reduce
area, timing, and power, making them constraint to security
properties that could incur significant overheads. Not only
one, but all the underlying algorithms should be conscious of
the security assets in the design to ensure secure translation.
Such modifications could be time-consuming and may not be
feasible in some cases due to the involved cost and timing
constraints.

Solution #6: Automated Verification Tools: There is a
need to develop automated security verification tools for HLS
translation [7]. Such tools could exist at both C/C++ and
RTL levels. Tools at C/C++ can help users identify early
if insecure HLS coding practices are used. They could an-
alyze user constraints (pragmas and directives) to help users
visualize the hardware that will be generated after the HLS
optimizations. For example, such tools could identify the
data dependency between operations to create a map when
different operations are scheduled. It could help users to ensure
scheduling optimizations do not violate security policies such
as “If A then only B”. In short, C/C++ level tools may help
create an abstract model of ought to be generated RTL to
facilitate security verification and early ability to adjust user
constraints to achieve the desired hardware after translation.
Tools at RTL-level could ensure that the final RTL is free from
vulnerabilities by analyzing for information leakages, fault
injection [20], control flow violations, side-channel leakages
[11], [21], etc. These tools can be more accurate than C/C++
level tools because they could consider the logic and variables
introduced during translation, such as FSM, registers, etc.
Limitations: Tools developed for C/C++ design code can only
consider algorithmic flow and user constraints during analysis.
FSMs and other additional logic/variables introduced after
translation will be hard to model and could vary across HLS
compilers. The user constraints such as pragmas and directives
are also unique to the HLS compiler, thus, posing a challenge
to develop such tools scaled across different HLS compilers.
Certain verification tools at RTL-level may be inaccurate due
to a lack of targeted technology information at the RTL-level,
for example, side-channel analysis (power, electromagnetic,
etc.).

VII. CHALLENGES AHEAD

Security solutions and their limitations discussed in the
previous section established that a single verification method-
ology is not sufficient to provide completeness in limited
timing constraints. Therefore, there is a need for a combination
of automated security verification tools and guidelines to
ensure secure HLS translation. The development of such tools
and guidelines is a non-trivial task and faces many challenges.

Some of these challenges which affect future work in this
domain are discussed below:

• Closed System: There is a scarcity of open-source HLS
compilers that could match industry standards. Chisel,
which is widely used to generate RTL for SoCs and
processors, is not HLS but a scala-based language to
describe hardware design [1]. Widely used commercial
HLS compilers such as Vivado HLS [33], Catapult [9],
Stratus [2], etc., are protected closed systems. The so-
lutions which require modifications in the compiler can
only be possible after collaboration between industry
and academia. Further, solutions implemented for one
compiler may not be implemented on others due to
protected copyright issues.

• Non-standardized Translation: Every compiler comes
with its own set of specifications and coding style.
Cadence Stratus [2], for example, requires that clock and
reset signals be defined in C/C++ whereas Vivado HLS
[33] and Catapult [9] do not, and clock and reset signals
are generated in the RTL automatically. HLS compilers
have their own set of library files to optimize the transla-
tion of certain logic, such as floating points, custom data
widths, DSPs, etc. The non-standardization that prevails
across HLS compilers poses a unique challenge towards
developing uniform solutions and guidelines that could
be implemented across different HLS compilers.

• Protected Algorithms: The underlying algorithms used
by HLS compilers are protected trade secrets. Thus,
gaining access to such algorithms and modifying them
can pose unique challenges. The proof-of-concept could
be demonstrated on widely researched HLS algorithms
such as As-soon-as-possible (ASAP), As-last-as-possible
(ALAP), simulated annealing, etc., [24], [28]. But inte-
gration into existing products is only feasible after strong
industry-academia collaboration.

VIII. CONCLUSIONS

HLS is gained much popularity for rapidly generating hard-
ware designs by easily coding in HLLs, thus reducing design
complexity and time-to-market. In this paper, we discussed
HLS generic flow and different optimizations it can perform to
improve design throughput, area, latency, and power. We also
discussed how insecure coding practices in HLL and some
HLS optimizations could become the source of vulnerabilities
in the translated RTL. Finally, we discussed solutions and
challenges to mitigate those vulnerabilities, paving the way
towards secure HLS translation.

ACKNOWLEDGEMENT

This work was supported in part by Semiconductor Re-
search Corporation (SRC) Grant #2019-TS-2910.

REFERENCES

[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
Chisel: constructing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221. IEEE, 2012.

[2] Cadence. Stratus. https://www.cadence.com/en US/home/tools/digital-
design-and-signoff/synthesis/stratus-high-level-synthesis.html.

[3] A Cortes, I Velez, and A Irizar. High level synthesis using vivado hls
for zynq soc: Image processing case studies. In 2016 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE,
2016.

[4] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres
Takach. An introduction to high-level synthesis. IEEE Design & Test
of Computers, 26(4):8–17, 2009.

[5] Philippe Coussy and Adam Morawiec. High-level synthesis: from
algorithm to digital circuit. Springer Science & Business Media, 2008.

[6] Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1.
Springer, 2010.

[7] Farimah Farahmandi and Mark Tehranipoor. CAD for hardware security.
Springer, 2021.

[8] Daniel D Gajski and Loganath Ramachandran. Introduction to high-level
synthesis. IEEE Design & Test of Computers, 11(4):44–54, 1994.

[9] Mentor Graphics. Catapult hls. https://www.mentor.com/hls-lp/catapult-
high-level-synthesis/.

[10] Peter Gutmann. Encrypt-then-mac for transport layer security (tls) and
datagram transport layer security (dtls). Request for Comments, 7366,
2014.

[11] Miao He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin, and
Mark Tehranipoor. Rtl-psc: Automated power side-channel leakage
assessment at register-transfer level. In 2019 IEEE 37th VLSI Test
Symposium (VTS), pages 1–6. IEEE, 2019.

[12] M. Horowitz. 1.1 computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 10–14, 2014.

[13] David D Hwang, Kris Tiri, Alireza Hodjat, B-C Lai, Shenglin Yang,
Patrick Schaumont, and Ingrid Verbauwhede. Aes-based security copro-
cessor ic in 0.18-muhboxm cmos with resistance to differential power
analysis side-channel attacks. IEEE Journal of Solid-State Circuits,
41(4):781–792, 2006.

[14] Brucek Khailany, Evgeni Krimer, Rangharajan Venkatesan, Jason
Clemons, Joel S Emer, Matthew Fojtik, Alicia Klinefelter, Michael
Pellauer, Nathaniel Pinckney, Yakun Sophia Shao, et al. A modular
digital vlsi flow for high-productivity soc design. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2018.

[15] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Validating high-level
synthesis. In International Conference on Computer Aided Verification,
pages 459–472. Springer, 2008.

[16] Bob Martin, Mason Brown, Alan Paller, Dennis Kirby, and Steve
Christey. 2011 cwe/sans top 25 most dangerous software errors.
Common Weakness Enumeration, 7515, 2011.

[17] Anmol Mathur, Masahiro Fujita, Edmund Clarke, and Pascal Urard.
Functional equivalence verification tools in high-level synthesis flows.
IEEE Design & Test of Computers, 26(4):88–95, 2009.

[18] Michael C McFarland, Alice C Parker, and Raul Camposano. Tutorial
on high-level synthesis. In Proceedings of the 25th ACM/IEEE Design
Automation Conference, pages 330–336, 1988.

[19] Kevin Morris. Hls powers ai revolution.
https://www.eejournal.com/article/hls-powers-ai-revolution/.

[20] Adib Nahiyan, Farimah Farahmandi, Prabhat Mishra, Domenic Forte,
and Mark Tehranipoor. Security-aware fsm design flow for identifying
and mitigating vulnerabilities to fault attacks. IEEE Transactions on
Computer-aided design of integrated circuits and systems, 38(6):1003–
1016, 2018.

[21] Adib Nahiyan, Jungmin Park, Miao He, Yousef Iskander, Farimah
Farahmandi, Domenic Forte, and Mark Tehranipoor. Script: A cad
framework for power side-channel vulnerability assessment using in-
formation flow tracking and pattern generation. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 25(3):1–27, 2020.

[22] Adib Nahiyan, Kan Xiao, Kun Yang, Yeir Jin, Domenic Forte, and
Mark Tehranipoor. Avfsm: a framework for identifying and mitigating
vulnerabilities in fsms. In Proceedings of the 53rd Annual Design
Automation Conference, pages 1–6, 2016.

[23] Erdal Oruklu, Richard Hanley, Semih Aslan, Christophe Desmouliers,
Fernando M Vallina, and Jafar Saniie. System-on-chip design using
high-level synthesis tools. 2012.

[24] Pierre G Paulin and John P Knight. Scheduling and binding algorithms
for high-level synthesis. In Proceedings of the 26th ACM/IEEE Design
Automation Conference, pages 1–6, 1989.

[25] Nitin Pundir, Fahim Rahman, Mark Tehranipoor, and Farimah Farah-
mandi. Analyzing security vulnerabilities induced by high-level synthe-
sis in socs, 2020.

[26] Robert C Seacord. The CERT C secure coding standard. Pearson
Education, 2008.

[27] Amazon Web Services. F1 instances. https://aws.amazon.com/.
[28] Azeddien M Sllame and Vladimir Drabek. An efficient list-based

scheduling algorithm for high-level synthesis. In Proceedings Euromicro
Symposium on Digital System Design. Architectures, Methods and Tools,
pages 316–323. IEEE, 2002.

[29] Leon Stok. Data path synthesis. Integration, 18(1):1–71, 1994.
[30] Mohammad Tehranipoor and Cliff Wang. Introduction to hardware

security and trust. Springer Science & Business Media, 2011.
[31] Kazutoshi Wakabayashi and Takumi Okamoto. C-based soc design

flow and eda tools: An asic and system vendor perspective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19(12):1507–1522, 2000.

[32] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. Detect-
ing malicious inclusions in secure hardware: Challenges and solutions.
In 2008 IEEE International Workshop on Hardware-Oriented Security
and Trust, pages 15–19. IEEE, 2008.

[33] Xilinx. Vivado hls. https://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html.

