
When Machine Learning Meets Hardware
Cybersecurity: Delving into Accurate Zero-Day

Malware Detection
Zhangying He1, Tahereh Miari2, Hosein Mohammadi Makrani3,
Mehrdad Aliasgari1, Houman Homayoun3, and Hossein Sayadi1

1California State University, Long Beach, CA, USA
2California State Polytechnic University, Pomona, CA, USA

3University of California, Davis, CA, USA

Abstract—Cybersecurity for the past decades has been in the
front line of global attention as a critical threat to the information
technology infrastructures. According to recent security reports,
malicious software (a.k.a. malware) is rising at an alarming
rate in numbers as well as harmful purposes to compromise
security of computing systems. To address the high complexity
and computational overheads of conventional software-based
detection techniques, Hardware-Supported Malware Detection
(HMD) has proved to be efficient for detecting malware at
the processors’ microarchitecture level with the aid of Machine
Learning (ML) techniques applied on Hardware Performance
Counter (HPC) data. Existing ML-based HMDs while accurate
in recognizing known signatures of malicious patterns, have not
explored detecting unknown (zero-day) malware data at run-time
which is a more challenging problem, since its HPC data does not
match any known attack applications’ signatures in the existing
database. In this work, we first present a review of recent ML-
based HMDs utilizing built-in HPC registers information. Next,
we examine the suitability of various standard ML classifiers for
zero-day malware detection and demonstrate that such methods
are not capable of detecting unknown malware signatures with
high detection rate. Lastly, to address the challenge of run-time
zero-day malware detection, we propose an ensemble learning-
based technique to enhance the performance of the standard
malware detectors despite using a small number of microar-
chitectural features that are captured at run-time by existing
HPCs. The experimental results demonstrate that our proposed
approach by applying AdaBoost ensemble learning on Random
Forrest classifier as a regular classifier achieves 92% F-measure
and 95% TPR with only 2% false positive rate in detecting zero-
day malware using only the top 4 microarchitectural features.

I. INTRODUCTION
The last decade has witnessed a never-ending growth in

complexity of modern computing systems. This has resulted
in emergence of new security vulnerabilities, making these
systems accessible targets for increasingly complex cyber
attacks [1], [2]. The attackers are actively utilizing emerging
vulnerabilities to compromise the security of systems and
deploy malicious activities. Malware is the general term for
a group of malicious programs developed by cyber-attackers
to perform harmful tasks like damaging or disabling computer
systems, networks, and mobile devices or leaking sensitive
data and personally identifiable information [3], [4]. Attackers
typically blend malicious code into seemingly benign and
legitimate applications to lure unwary users into downloading
malicious programs on the target system. With malware usage
continuing to rise, effective malware detection strategies have
become more critical as they function as an early warning

system to protect the computer systems.
The recent evolution of mobile platforms and Internet-

of-Things (IoT) devices has further intensified the impact of
malware threats. There exists some important factors influenc-
ing the security vulnerability of embedded systems and IoTs
including the limited energy and resources available, the low
computational capacity, and significant number of computing
nodes in the network [5], [6]. Therefore, there is an urgent
need to develop intelligent security countermeasures to combat
the ever-increasing rise in malicious cyber-attacks and protect
the integrity and confidentiality of the authenticated users’
information at the computing systems’ hardware level.

Traditionally, integrity of data has been protected with vari-
ous security protocols at the software level with the underlying
hardware assumed to be secure. This assumption however is no
longer true with an increasing number of attacks reported on
the hardware. Conventional software-based malware detection
techniques have shown to be inefficient mostly imposing
significant complexity and computational overheads on the
system. Such detection methods also depend on the static
signature analysis of the applications preventing them from
detecting unseen attacks at run-time.

To overcome the performance and computational over-
heads challenges of traditional malware detection techniques,
Hardware-Supported Malware Detection (HMD) has emerged
by employing low-level microarchitectural features of running
applications on the target system [7], [8]. These features are
collected through Hardware Performance Counters (HPCs)
registers, special-purpose registers designed in modern micro-
processors to capture the hardware-oriented events of profiled
applications that are left on the underlying processor architec-
ture [4], [9]. Hardware-supported malware detection methods
have shown the suitability of standard machine learning (ML)
algorithms applied on HPCs information in detecting patterns
of malicious applications [7], [10], [4], [11], [12].

Malicious software attacks have continued to evolve in
quantity and sophistication during the past decade. Zero-day
malware attacks are a form of cyber threat that is released
before a defense is in place. They are essentially a type of
malware with no history or clear remediation strategy that can
be leveraged by threats of different types of malware, such as
Viruses, polymorphic worms, Trojans, Rootkits, etc. Hence,
the malicious programs can quickly attack the targeted vul-
nerabilities within the operating system and the applications.
Detection of zero-day attacks is a long-standing challenge for

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 85 22nd Int'l Symposium on Quality Electronic Design

anomaly detection algorithms, especially in security-critical
applications. It is known that zero-day malicious software
do not have any known antivirus signatures that makes them
truly challenging to detect using the traditional off-the-shelf
detection mechanisms. In particular, due to the absence of
a structured remediation strategy and mitigation plan, such
vulnerabilities are exploitable by adversaries. As a result, the
existing static signature-based approaches are not a suitable
approach to catch zero-day malware applications. In addition,
prior works on HMD have not discussed the problem of zero-
day malware detection using effective and accurate machine
learning techniques.

In this paper, we have addressed the challenge of detecting
zero-day malware patterns at run-time using hardware features
that has been ignored in prior HMD studies. In particular,
our comprehensive examination across different types of mal-
ware and machine learning algorithms used for HPC-based
malware detection indicates that standard machine learning
classifiers (widely used in prior works) fail in recognizing the
signature of zero-day (unknown) malware with high detection
rate. Our analysis shows a clear performance degradation in
standard ML classifiers used for zero-day malware detection.
In this work we first present an analysis of existing ML-based
malware detection methods utilizing built-in HPC registers
information. Next, we comprehensively examine the suitabil-
ity of various standard ML classifiers for zero-day malware
detection and demonstrate that such methods are not capable
of detecting unknown malware signatures with high detection
rate. Lastly, to address the challenge of run-time zero-day
malware detection, we propose an ensemble learning-based
technique to enhance the performance of the standard malware
detectors despite using a small number of microarchitectural
features that are captured at run-time by existing HPCs.

The remainder of this paper is organized as follows. Section
II presents an overview of related work and background on the
topic of hardware malware detection using machine learning
techniques. Section III presents an overview of the proposed
methodology. Section IV discusses the evaluation criteria and
results analysis. Finally, Section V concludes this study.

II. BACKGROUND CHARACTERIZATION
In this section, we describe the background on HPCs for

security analysis and existing studies on hardware-supported
malware detection using machine learning techniques.

A. Hardware Performance Counters for Security Analysis
The complexity of today’s computing systems has tremen-

dously increased in the past decades. Hierarchical cache sub-
systems and processor pipeline, simultaneous multithreading,
and out-of-order execution units have a significant impact
on the performance of computing systems [13], [14]. Access
to the performance monitoring module, an essential feature
in modern microprocessors (e.g. Intel, ARM, and AMD), is
generally provided in the form of programmable hardware
performance counter registers. HPCs are specialized registers
designed inside modern microprocessors to monitor and cap-
ture different hardware-related events [12], [10]. Due to limited
number of physical expensive to implement HPC registers
on the processor chip, HPCs are constrained in the number
of events that could be counted concurrently [12], [4]. A
variety of processor platforms such as Intel, ARM, and AMD
include HPCs on their processors. For example, the number of
counter registers in the Intel Ivy-bridge and Intel Broadwell

TABLE I: HPC features and their descriptions
HPC event Description

Branch instructions # branch instructions retired
Branch-misses # branches mispredicted

Instructions # instructions retired
bus-cycles time to make a read/write between the cpu and memory

Cache misses # last level cache misses
Cache-references # last level cache references

L1-dcache-load-misses # cache lines brought into L1 data cache
L1-dcache-loads # retired memory load operations
L1-dcache-stores # cache lines into L1 cache from DRAM

L1-icache-load-misses # instruction misses in L1 instructions cache
node-loads # successful load operations to DRAM
node-stores # successful store operations to DRAM

LLC-load-misses # cache lines brought into L3 cache from DRAM
LLC-loads # successful memory load operations in L3 cache

iTLB-load-misses # misses in instruction TLB during load operations
Branch-loads # successful branches

CPUs is limited to only four per processor core, meaning that
only four HPCs can be captured simultaneously. In addition,
Intel SandyBridge and Haswell architectures both have total 8
general purpose counters per core.

HPCs are able to count a variety of low-level events such as
cache memories access and misses, TLB hits and misses, and
branch mispredictions for various optimization targets such as
performance, energy-efficiency, and security enhancement. In
particular, HPCs are programmed to issue an interrupt when a
counter overflows or even be set to start the counter from the
desired value. Table I reports a subset of deployed low-level
features captured by HPC registers from Perf tool under Linux
in our experiments and their descriptions.

B. ML for Hardware-Supported Malware Detection
Table II lists a summary of recent ML-based malware

detection techniques utilizing HPC features. Demme et al. [7]
was the first study to examine the effectiveness of hardware
performance counter information for the purpose of accurate
malware detection. The authors proposed the idea of using
hardware performance counter data to accurately detect ma-
licious behavior patterns using machine learning techniques
primarily on mobile operating systems such as Android. The
paper ultimately demonstrated successfully the effectiveness of
offline machine learning algorithms in identifying malicious
software. In addition, it illustrated the suitability of employing
HPC information in detecting malware at the Linux OS level
such as Linux rootkits and cache side-channel attacks on Intel
and ARM processors. It exhibited high detection performance
results for Android malware by applying complex ML al-
gorithms, namely Artificial Neural Network (ANN) and K-
Nearest Neighbor (KNN).

In a different study, Tang et al. [8] further discussed
the feasibility of unsupervised learning that employs low-
level HPCs features for detecting return-oriented programming
(ROP) and buffer overflow attacks by finding anomalies in
hardware performance counter information. For feature selec-
tion, this study used the Fisher Score metric to identify the
top 7 low level features for malware detection. These reduced
features are then used to train unsupervised machine learning
methods for detecting deviations in program behavior that
occur due to a potential malicious attack. The work further
provides a comparison of performance using different sampling
frequencies of the HPCs.

The work in [15] used sub-semantic features to detect
malware using Logistic Regression (LR) and ANN algorithms.
Moreover, they suggested changes in microprocessor pipeline
to detect malware in truly real-time nature which increases the

TABLE II: Summary of recent hardware-assisted malware detection techniques and their classification methods

Research Platform Classification Model Threat Type Microarchitectural Features Evaluation Metric

[7] Android, Linux KNN, NN, DT, RF Malware Low-level hardware performance counters in the form of multi-dimensional time series data FP, ROC, AUC

[8] Linux ocSVM Malware 22 features including LLC, Load & store instructions retired, Branch instructions retired, etc. F Score, AUC, ROC

[15] Windows LR, NN Malware Instruction mix features, Memory reference patterns, and Architectural events ACC, S, C, FP, ROC

[16] Windows LR, NN, EL Backdoor, PWS, Rogue, Tro-
jan, Worm

Instruction mix features, Memory reference patterns, and Architectural events same as [15] ACC, FP, ROC, AUC

[10] Linux SVM, ocSVM, NB, DT Kernel Rootkits 8 low level events (branch instructions, cache misses, etc.) Confusion Matrix, ROC

[4] Linux BN, J48, JRip, MLP, OneR,
RT, SGD, SMO, AB, BG

Malware (32/16/8/4/2) low-level events (branch instructions, cache misses, etc.) ACC, AUC, ACC*AUC

[17] Windows DT, RF, MLP, KNN, AB,
NB

Malware 6 low level features (data cache load & store references, number of CLFLUSH instructions executed, etc. AUC, F1-score

[12] Linux J48, JRip, MLP, OneR, AB Virus, Trojan, Rootkits, Back-
door

8/4 low-level events (branch instructions, cache misses, etc.) F Score, AUC, F Score*AUC

[11] Linux J48, JRip, LR, KNN, BOFF,
FCN

Stealthy Malware (Trojan,
Rootkits, Backdoor, Blended)

1 low-level event (branch instructions) F1-score, AUC, P, R, ACC

Accuracy: ACC, Sensitivity: S, Specificity: C, Precision: P, Recall: R, K Nearest Neighbor: KNN, BayesNet: BN, NaiveBayes: NB, Logistic Regression: LR, AdaBoost: AB, Bagging: BG, Support Vector Machine: SVM, One Class SVM: ocSVM, Neural
Netework: NN, Last Level Cache References: LLC, REPTree: RT, Decision Tree: DT, Random Forest: RF, Ensemble Learning: EL, Bag-of-Pattern-Features: BOFF, Fully Convolutional Network: FCN.

overhead and complexity. They explored sub-semantic features
in the low-level features space by evaluating three types of
features including 1) features based on executed instructions
that include frequency of instruction categories, Frequency of
opcodes with largest difference, existence of categories, and
existence of opcodes 2) features based on memory address
patterns consist of frequency of memory address distance
histogram and memory address distance histogram mix, and 3)
features based on architectural events that include frequency
of memory read/writes, taken and immediate branches, and
unaligned memory accesses. The HMD study in [16] used the
same feature set and applied logistic regression to classify mal-
ware into different types and trained a specialized classifier for
detecting each class. They further used specialized ensemble
learning to improve the accuracy of malware detectors.

Singh et al. [10] is a recent work on HMD that deploys
machine learning algorithms applied on synthetic traces of
HPC features for detection of kernel-level rootkit attacks. For
feature reduction, they process the application traces using
the Gain Ratio feature selection technique from the WEKA
machine learning toolkit to determine which features are the
most prominent for each rootkit. The authors achieve high
prediction accuracy in detecting five self-developed synthetic
rootkits models. Nevertheless, this work while important only
focused on detection of kernel rootkit attacks using a limited
set of synthesis datasets.

The research in [4] proposed ensemble learning techniques
to facilitate run-time hardware-assisted malware detection and
improved the performance of HMD by accounting for the
impact of reducing the number of HPC features on the perfor-
mance of malware detectors. In addition, a recent work in [12]
proposed a two-stage machine learning-based approach for
run-time malware detection in which in the first level classifies
applications using a multiclass classification technique into
either benign or one of the malware classes (Virus, Rootkit,
Backdoor, and Trojan). In the second level, to have a high
detection performance, the authors deploy a machine learning
model that works best for each class of malware and further
apply effective ensemble learning to enhance the performance
of malware detection.

The work in [17] evaluated the suitability of HPCs for
HMD. Though the presented experimental results in [17] are
mostly in favor of malware detection through HPCs, they claim

that if HPC traces of malware and benign applications are
similar, it is hard to detect malware. However, the robustness
of malware detection highly depends on the type of classifier
employed. In addition, it is likely to mislead the HMD meth-
ods, if the malware is crafted adversarially to perturb HPC
patterns look similar to benign applications patterns, similar
to adversarial attack in CNNs for image processing [18].
However, no details on crafting such adversarial applications
nor real-world samples are provided. Furthermore, this work
has performed limited analysis on embedded malware and
only shows that one benign program (Notepad++) infused
with ransomware cannot be detected by traditional machine
learning-based HMD without providing any effective solution
to tackle the challenge of detecting stealthy malware.

The work in [11] focuses on the challenge of detecting
embedded malware using hardware features. Embedded mal-
ware refers to harmful stealthy cyber-attacks in which the ma-
licious code is hidden within benign applications and remains
undetected by traditional malware detection approaches [19].
In HMD methods, when the HPC data is directly fed into
a ML classifier, embedding malicious code inside the benign
applications leads to contamination of HPC information, as
the collected HPC features combine benign and malware
microarchitectural events together. To address this challenge,
the authors in [11] presents StealthMiner, a specialized time
series machine learning approach based on Fully Convolutional
Network (FCN) to detect embedded malware at run-time using
branch instructions feature, the most prominent HPC feature.

III. METHODOLOGY OVERVIEW
In this section, we describe the proposed machine learning-

based approach for effective run-time zero-day HMD. As
depicted in Figure 1 the microarchitectural features are first
collected using a performance evaluation tool and then we ana-
lyze the features to select the most prominent HPCs addressing
issue of run-time detection using a limited number of HPC
registers physically available on the modern microprocessors
chip. Next, various ML models (regular vs. boosted) will be
implemented to detect the existence of zero-day malware.
A. Experimental Configuration

In our experiments, the benign and malware applications
are executed on an Intel Xeon X5550 machine (4 HPC registers
available) running Ubuntu 14.04 with Linux 4.4 Kernel and
HPC features are captured using Perf tool available under

Linux at sampling time of 10ms. We executed more than
5000 benign and malware applications for data collection.
Benign applications include real-world applications comprising
MiBench and SPEC2006, Linux system programs, browsers,
and text editors. Malware applications collected from virustotal
and virusshare online repositories which comprises nine types
of malware including Worm, Virus, Botnet, Ransomware,
Spyware, Adware, Trojan, Rootkit, and Backdoor. The HPC
information is collected by running applications in an isolated
environment referred as Linux Containers (LXC) [20] which
unlike common virtual platforms such as VMWare or Virtual-
Box, provides access to actual hardware performance counters
data instead of emulating HPCs.

B. Machine Learning Classifiers
Here we briefly describe the machine learning classifiers

tested for known and unknown malware detection in this work.
The rationale for choosing these machine learning models
is that they are from different branches of ML covering
a diverse range of learning algorithms and the prediction
model produced by these learning algorithms can be a binary
classification model which is compatible with the malware
detection problem.
- Decision Tree (DT) is a sequential supervised learning model
(a.k.a. divide and conquer algorithm), which logically com-
bines a sequence of simple tests where a numerical attribute is
compared against a threshold value or against a set of possible
values. It is essentially a flow chart like structure where each
internal node denotes a test on an attribute with each branch
representing an outcome of the test and each leaf holding a
class label. Decision Trees tend to overfit data with many
features, so feature selection and dimensional reduction of a
dataset are essential to avoid overfitting.
- Random Forest (RF) is an ensemble machine learning
algorithm based on randomized decision trees. It basically
builds the tree by splitting on a random subset of features.
In each split, the model selects only a small subset of features
randomly, so its model tends to have a low bias and a moderate
variance. It is a robust machine learning algorithm that can
properly handle imbalanced dataset.
- Gaussian Naı̈ve Bayes (GNB) is a simple classification
technique based on the Bayes theorem. It can handle a high
dimensional dataset with a smaller model size. Complex
classification problems can also be implemented by using the
Gaussian Naive Bayes Classifier. GNB supports continuous
data, assuming that the feature sets associated with each class
are distributed according to a Gaussian distribution.
- Stochastic Gradient Descent Classifier (SGD) is a linear
classifier optimized by stochastic gradient descent which is
an efficient approach to fitting linear classifiers and regressors
under convex loss functions such as (linear) Support Vector
Machines (SVM) and Logistic Regression (LR). By default,
Scikit Learn implements a stochastic gradient descent learning
routine over a linear SVM that supports different loss functions
and penalties for classification. It allows minibatch learning
that each sample estimates the gradient of the loss at a
time. The model is updated along the way with a scheduled
decreasing learning rate.
- Logistic Regression (LR) is a linear statistical regression-
based algorithm used for analyzing a dataset in which there are
one or more independent variables that determine an outcome.
The goal of this algorithm is to find the best fitting model to

Unknown (Zero-day) HPCs data

Effective Zero-day
Malware Detector

Target Model Benign

Malware
Testing

Microarchitectural
features collection

using Perf

Feature Selection:
Identifying top

features

ML Models:
Regular vs.
Boosted ML

Building ML ClassifiersData Collection and Microarchitectural Feature Analysis

Training

Fig. 1: Overview of the proposed zero-day malware detection frame-
work using microarchitectural features

describe the relationship between dependent variable (response
or outcome variable) and a set of independent (predictor or
explanatory) variables. In particular, the logistic regression
algorithm models and refines the relationship between features
and labels iteratively using error measures and output proba-
bilities of classes.
- ExtraTree Classifier (ExtraTree) is a meta estimator to fit
multiple randomized sub-trees by randomly sampling data
from the original input data without data replicas. It selects
the tree split randomly and once the split points are chosen,
the two algorithms on the sub-trees determine the best one
between all the subset of features. Therefore, ExtraTree adds
randomization but still has optimization which has reduced
bias and variance than algorithms with a bootstrap replica.
Due to the nature of a random sampling of the data, it is a fast
algorithm that uses averaging of a subset of trees to improve
the predictive accuracy and minimize over-fitting.
- AdaBoost or Adaptive Boosting is one of the most commonly
used ensemble learning methods for enhancing the perfor-
mance of ML algorithms. In AdaBoost methodology, each base
classifier is trained on a weighted form of the training dataset in
which the weights depend on the performance of the previous
base ML classifier. Once all the base classifiers are trained,
they will be combined to produce the final classifier. Each
training instance in the dataset is weighted and the weights
are updated based on the overall accuracy of the model and
whether an instance was classied correctly or not. Subsequent
models are trained and added until a minimum accuracy is
achieved or no further improvement is possible. In this work,
we applied AdaBoost as a boosting learning technique on all
studied general ML classifiers to analyze its impact on the
accuracy and performance improvement of HPC-based zero-
day malware detection.

C. Hardware Features Analysis
Feature selection is considered as a critical step of develop-

ing effective ML-based hardware malware detectors [4]. There
exists numerous microarchitectural events with different func-
tionality available to collect from running programs in modern
microprocessors. Counting all possible features would result
in a high dimensional data which increases computational
complexity and induces delay. Moreover, including irrelevant
features could reduce the performance of classifiers [21], [12].

We employ the Recursive Feature Elimination (RFE)
method using the wrapper function available in Scikit Learn
for feature selection. RFE is a feature selection method that
fits a model and removes the weakest feature (or features) until
the specified number of features is reached. In particular, RFE
begins by building a model using our specified DT classifier
on the entire dataset, computing the weights of the features.
It then gradually eliminates the features with less importance.
In the last, the least important features are pruned until the
target number of adjusted features (4 HPCs) is met. To this

end, we deploy RFE with a Stratified ten-fold cross-validation
technique in our feature selection process. The Stratified cross-
validation method shuffles the dataset randomly and splits it
into ten groups. Each round holds one group as a test set
and uses the rest groups as the training set. It then fits both
training and test data to the DT classifier to evaluate the model
performance, assigns weights to each feature, and prunes less
important features. We run it repeatedly for five times at each
experiment with a different number of features. RFE gradually
prunes the less important features until we finally rank all
captured features and select the top features with satisfying
model accuracy. We ultimately choose the top four features of
node-loads, dTLB-stores, cycles-ct, and branch-instructions to
implement the ML-based malware detectors.

D. Implementation of ML-based Malware Detectors
Existing HMD studies have adopted two main validation

methods including cross validation and percentage split to
assess the effectiveness of the ML-based malware detectors.
The cross validation method splits the dataset into K (1, ..., n)
folds and selects one of them as testing dataset while the rest
folds are used for training dataset. The number of iteration
times is decided by the accuracy increases over successive
iterations and stops when the accuracy of the validation set
does not increase. Whereas, in the percentage split method, the
collected database is split into two parts based on percentage
setting allocated to training and the other to testing set.
However, the major issue with these validation techniques is
that the testing data is split from the large dataset and is part
or separated from the same data type used in training dataset.
Hence, in majority of scenarios such validation techniques
could not imitate the zero-day testing result in real-world
applications in which the trained ML classifiers should have
never seen the testing dataset.

Our methodology involves a two-stage process. We first
select the most prominent HPC features to train the machine
learning models with default parameter settings in the first
stage as our base learners. In the second stage, we feed these
base learners to AdaBoost ensemble learning classifier, run
a five-fold model selection process over the training dataset,
and evaluated their cross-validation scores to find the best
model of each run. We then test the boosted machine learning
models across various metrics on the validation and zero-day
test dataset. We implemented our ML classifiers with default
settings using scikit-learn [22]. Scikit-learn also supports popu-
lar boosting algorithms, including AdaBoostClassifier that we
used it to enhance the detection rate of the base ML-based
malware detectors.

To model the zero-day malware threat type, among all
malware types, we hold two types of malware from rootkit
and backdoor as the target zero-day test data to imitate the
zero-day testing result in real-world applications in which
the trained machine learning classifiers should have never
seen the testing dataset. The rest seven types of malware are
considered for training and validation purposes. We randomly
split them into 80% for training and 20% for validation
datasets. As demonstrated in Figure 1 and subsection III-V,
various regular and boosted ML models are trained and tested
using the unknown zero-day dataset to explore the feasibility
of the standard and boosted machine learning classifiers in
detecting the zero-day malware based on microarchitectural
features. Particularly, given the weak performance of standard

ML models (as we show in Section IV), we propose to use
AdaBoosted Random Forest classifier as the target hardware-
supported zero-day malware detector with high detection rate.

IV. EXPERIMENTAL RESULTS AND EVALUATION
Evaluating the performance of ML classifiers is an im-

portant step in implementing effective ML-based countermea-
sures. For analyzing the detection rate, malicious applications
samples are considered as positive instances. Hence, the True
Positive Rate (TPR) represents the proportion of correctly
identified positive instances or malicious samples. The True
Negative Rate (TNR) also evaluates the specificity that mea-
sures the proportion of correctly identified bengin or negative
samples. In addition, the False Positive Rate (FPR) is the rate
of benign files that are wrongly classified as malware.

The F-measure (F1-score) in ML is interpreted as a
weighted average of the precision (p) and recall (r). The
precision is the proportion of the sum of true positives versus
the sum of positive instances and the recall is the proportion of
instances that are predicted positive of all the instances that are
positive. F-measure is a more comprehensive evaluation metric
over accuracy (percentage of correctly classified samples) since
it takes both the precision and the recall into consideration.
More importantly, F-measure is also resilient to class imbal-
ance in the dataset which is the case in our experiments.
Furthermore, Receiver Operating Characteristic (ROC) is a
statistical plot that depicts a binary detection performance
while its discrimination threshold setting is changeable. The
ROC space is supposed by FPR and TPR as x and y axes,
respectively. It determines trade-offs between TP and FP (the
benefits and costs analysis). Given that the TPR and FPR are
equivalent to sensitivity and (1-specificity) respectively, each
prediction result represents one point in the ROC graph in
which the point in the upper left corner ([0, 1]) stands for the
perfect detection result, indicating 100% sensitivity and 100%
specificity. Area Under the Curve (AUC) is another important
evaluation metric for checking any ML model’s performance at
various thresholds settings. It shows how well a classification
model is capable of distinguishing between different classes.

15% 6%

30% 31% 27%

23%

0%

20%

40%

60%

80%

100%

DecisionTree RandomForest GNB SGD-Classifier Logis Regres ExtraTree

F-
M

ea
su

re

Machine Learning Classifiers

F1 (Known) F1 (Unknown)

Fig. 2: F-Measure comparison of various ML-based HMD models for
detecting known and unknown (zero-day) malware

To further shed light on the challenge of zero-day malware
detection using microarchitectural features, we have imple-
mented various ML classifiers (used for HMD with 4 HPC
features) considering both known and unknown conditions and
the F-measure results are shown in Figure 2. As observed, the
performance of standard machine learning models drop (up
to 30% in GNB and SGD) when examined by the unknown
(zero day) test data such that the trained machine learning
classifiers have never seen the testing dataset. This significant
performance reduction highlights the necessity of proposing
an effective ML-based solution on top of the weak standard

TABLE III: Performance and overhead results of different ML-based
detectors for zero-day malware detection

Model F1-Score AUC TPR FPR FNR Latency(ms)
Random Forest 0.88 0.88 0.89 0.02 0.11 0.0160
Decision Tree 0.77 0.79 0.88 0.06 0.12 0.0003
GNB 0.28 0.33 0.25 0.08 0.75 0.0003
SGD 0.42 0.52 0.70 0.22 0.30 0.0013
Logistic Reg. 0.33 0.42 0.55 0.25 0.45 0.0009
ExtraTree 0.68 0.71 0.82 0.08 1.0 0.0004
Boosted-RF 0.92 0.922 0.95 0.02 0.05 0.0183
Boosted-DT 0.8 0.82 0.96 0.06 0.04 0.0004
Boosted-GNB 0.34 0.38 0.39 0.13 0.61 0.0114
Boosted-SGD 0.48 0.65 0.996 0.30 0.004 0.0009
Boosted-LR 0.33 0.58 0.96 0.52 0.04 0.0082
Boosted-ExtraTree 0.76 0.78 0.83 0.05 0.17 0.0005

Fig. 3: ROC graphs of the zero-day malware detectors A) Boosted-RF
vs. RF, and B) Boosted-DT vs. DT

classifiers to boost up of the detection rate of hardware-
supported zero-day malware detection.

Table III reports the performance and latency overhead
results of different ML-based detectors (regular and boosted)
for zero-day malware detection using 4 HPC features. We
essentially ran two rounds of the experiment by applying
AdaBoost techniques over the trained most robust machine
learning classifiers. We observe that our proposed AdaBoosting
technique over Random Forest, which is the strongest classifier
among all test models achieves F1-score and AUC of 92% and
92.2% on the unknown dataset, outperforming the regular RF
classifier results (0.88 on F1-score and 0.87 on AUC without
using the boosting method). The proposed Boosted-RF model
also offers 95% TPR with only 2% false positive rate with
relatively negligible detection latency per sample overhead.

Figure 3 further illustrates the ROC graphs of zero-day
malware detectors for RF and DT models with and without
applying AdaBoost method. The solid blue line in the figure
shows the ROC curve plot of our proposed method on the zero-
day unknown dataset, compared with the solid orange line of
the Random Forest before applying AdaBoost. As seen, our
ensemble learning-based method improves the ROC curve on
the zero-day test dataset from 0.877 to 0.922 in Random Forest
classifier, with a 4.5% enhancement highlighting the effective-
ness of the proposed method in improving the robustness of
the zero-day malware detection.

V. CONCLUSION
Existing ML-based hardware malware detection methods

while offering promising results in detecting known signa-
tures of malicious patterns, fall short in accurate detection
of unknown (zero-day) malware at run-time with a limited
number HPCs. Since the zero-day malware HPC data does
not match any seen attack applications’ signatures in the
existing database, that makes it a more challenging problem to

address. In this work, we first present a review of the progress
on ML-based malware detection techniques utilizing built-in
HPC registers information. Next, we explore the suitability of
various standard ML classifiers for zero-day malware detection
and demonstrate that such methods are not able to detect
the unknown malware signature with high detection rate. In
response, we propose an ensemble learning-based methodol-
ogy to enhance the performance of the standard ML-based
detectors for detecting unknown malware despite using a small
number of microarchitectural features that are captured at run-
time by existing HPCs.

REFERENCES
[1] H. Wang and et al., “Mitigating cache-based side-channel attacks

through randomization: A comprehensive system and architecture level
analysis,” in DATE’20, 2020.

[2] H. Sayadi and et al., “Recent advancements in microarchitectural se-
curity: Review of machine learning countermeasures,” in MWSCAS’20,
2020, pp. 949–952.

[3] A. Bettany and M. Halsey, “What is malware?” in Windows Virus and
Malware Troubleshooting. Springer, 2017, pp. 1–8.

[4] H. Sayadi and et al., “Ensemble learning for effective run-time
hardware-based malware detection: A comprehensive analysis and clas-
sification,” in DAC’18, 2018, pp. 1–6.

[5] A. Mosenia and N. K. Jha, “A comprehensive study of security of
internet-of-things,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 4, pp. 586–602, Oct 2017.

[6] S. M. P. Dinakarrao and et al., “Lightweight node-level malware
detection and network-level malware confinement in iot networks,” in
DATE’19, March 2019, pp. 776–781.

[7] J. Demme and et al., “On the feasibility of online malware detection
with performance counters,” in ISCA’13. ACM, 2013, pp. 559–570.

[8] A. Tang and et al., “Unsupervised anomaly-based malware detection
using hardware features,” in RAID’14. Springer, 2014, pp. 109–129.

[9] H. Wang and et al., “Hybrid-shield: Accurate and efficient cross-layer
countermeasure for run-time detection and mitigation of cache-based
side-channel attacks,” in ICCAD’20, ser. ICCAD ’20, 2020.

[10] B. Singh and et al., “On the detection of kernel-level rootkits using
hardware performance counters,” in ASIACCS’17, 2017, pp. 483–493.

[11] H. Sayadi and et al., “Stealthminer: Specialized time series machine
learning for run-time stealthy malware detection based on microarchi-
tectural features,” in GLSVLSI’20, 2020, p. 175–180.

[12] H. Sayadi and et al., “2smart: A two-stage machine learning-based
approach for run-time specialized hardware-assisted malware detection,”
in DATE’19, March 2019, pp. 728–733.

[13] H. M. Makrani and et al., “Xppe: Cross-platform performance estima-
tion of hardware accelerators using machine learning,” in ASP-DAC’19,
2019.

[14] H. M. Makrani and et al., “Pyramid: Machine learning framework to
estimate the optimal timing and resource usage of a high-level synthesis
design,” in FPL’19, 2019, pp. 397–403.

[15] M. Ozsoy and et al., “Malware-aware processors: A framework for
efficient online malware detection,” in HPCA’15, 2015, pp. 651–661.

[16] K. N. Khasawneh and et al., “Ensemble learning for low-level hardware-
supported malware detection,” in RAID’15, 2015, pp. 3–25.

[17] B. Zhou and et al., “Hardware performance counters can detect mal-
ware: Myth or fact?” in ASIACCS’18, 2018, pp. 457–468.

[18] I. J. Goodfellow and et al., “Explaining and harnessing adversarial
examples,” in arXiv:1412.6572, 2015.

[19] S. J. Stolfo and et al., “Towards stealthy malware detection,” in Malware
Detection. Boston, MA: Springer US, 2007, pp. 231–249.

[20] M. Helsely, “Lxc: Linux container tools,” in IBM developer works
technical library, 2009.

[21] H. Liu and et al., Feature selection for knowledge discovery and data
mining. Springer Science & Business Media, 2012, vol. 454.

[22] F. Pedregosa and et al., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

