On the Interactions Between Real-Time Scheduling and Inter-thread Cache Interferences for Multicore Processors

Yiqiang Ding and Wei Zhang
Virginia Commonwealth University


Abstract

In a multicore platform, the inter-thread cache interferences can significantly affect the worst-case execution time (WCET) of each real-time task, which is crucial for schedulability analysis. At the same time, the worst-case cache interferences are dependent on how tasks are scheduled to run on different cores, thus creating a circular dependence. In this paper, we present an offline real-time scheduling approach on multicore processors by considering the worst-case inter-thread interferences on shared L2 caches. Our scheduling approach uses a greedy heuristic to generate safe schedules while minimizing the worst-case inter-thread shared L2 cache interferences and WCET. The experimental results demonstrate that the proposed approach can reduce the utilization of the resulting schedule by about 12% on average compared to the cyclic multicore scheduling approaches in our theoretical model.